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1 p-adic groups and their representations

1.1 The set-up

Through these notes, we let F be a non-archimedean local field with residue field Fq. The
discrete valuation of F endows F with a topology. The field Fq has cardinality q and
characteristic p. Let G be a connected reductive group over F . These groups include
GLn, SLn, SOn, Sp2n, . . ., but also groups of exceptional types G2, F4, E6, E7 and E8. We
assume that the reader has a basic familiarity with reductive groups. For a brief introduction
to reductive groups, see [Fin23, Sections 2.1 and 2.3]. In this lecture series we are interested
in the topological group G(F ) to which we also refer as a p-adic group, where the topology in
G(F ) is the one coming from the topolgy on F . For example, a basis of open neighborhoods
of the identity 1 in GLn(F ) consists of the subgroups

1 +ϖMatn×n(OF ) ⊃ 1 +ϖ2Matn×n(OF ) ⊃ 1 +ϖ3Matn×n(OF ) ⊃ . . . ,

where ϖ denotes a uniformizer of F .

1.2 Representations of p-adic groups

Definition 1.2.1. A smooth representation (π, V ) of G(F ) is

� a complex vector space V and

� a group homomorphism π : G(F ) → Aut(V )

such that for every v ∈ V the stabilizer Stab(v) = {g ∈ G(F ) |π(g)v = v} of v in G(F ) is
an open subset of G(F ).

We define smooth representations of closed subgroups of G(F ) (with respect to the p-adic
topology underlying the topological group G(F )) analogously.

In this survey we will focus on the irreducible smooth representations, i.e. those smooth
representations (π, V ) that have precisely two subrepresentations (subspaces of V preserved
under the action of G(F )): the trivial representation on the zero dimensional vector space
{0} and the representation (π, V ) itself.

An important finiteness property of smooth representations is the following.

Definition 1.2.2. A smooth representation (π, V ) of G(F ) is called admissible if the space

V K := {v ∈ V | π(k)v = v ∀ k ∈ K}

of K-fixed vectors has finite dimension for every compact open subgroup K of G(F ).

An important fact for representations with complex coefficients is that irreducible smooth
representations are automatically admissible.
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Fact 1.2.3. If (π, V ) is an irreducible smooth representation of G(F ), then (π, V ) is admis-
sible.

An important tool to construct representations is the induction. There are two kinds of
inductions that will play an important role for us.

Definition 1.2.4. Let H be a closed subgroup of G(F ) (with respect to the p-adic topology
underlying the topological group G(F )) and let (σ,W ) be a smooth representation of H.

The induced representation (R, Ind
G(F )
H W ) (also sometimes referred to as smooth induction)

is defined as follows:

� Ind
G(F )
H W is the space of functions f : G(F ) → W satisfying

(a) f(hg) = σ(h)f(g) for all h ∈ H, g ∈ G(F ), and

(b) there exists a compact open subgroup Kf ⊂ G(F ) such that f(gk) = f(g) for all
k ∈ Kf .

� The action of G(F ) on Ind
G(F )
H W is via right translation, i.e.

(R(g)(f))(x) = f(xg) ∀ g ∈ G(F ), f ∈ Ind
G(F )
H W,x ∈ G(F ).

We may also write (Ind
G(F )
H σ, Ind

G(F )
H W ) instead of (R, Ind

G(F )
H W ).

The compact induction of (σ,W ) from H to G(F ) is the subrepresentation (R, c-ind
G(F )
H W )

of (R, Ind
G(F )
H W ) consisting of functions f ∈ Ind

G(F )
H W whose support has compact image

in H\G(F ). We may also write (c-ind
G(F )
H σ, c-ind

G(F )
H W ) instead of (R, c-ind

G(F )
H W ).

For the smooth induction, we are particularly interested in the following special case.

Definition 1.2.5. Let P ⊂ G be a parabolic subgroup of G with Levi decomposition P =
M ⋉ N . Let (σ,W ) be a smooth representation of the Levi subgroup M(F ). The (not

normalized) parabolic induction (Ind
G(F )
P (F ) σ, Ind

G(F )
P (F )W ) is defined by inflating (i.e. extending)

the representation σ to a representation of P (F ) that is trivial on N(F ) and then inducing
the resulting representation from P (F ) to G(F ).

Remark 1.2.6. We caution the reader that some authors normalize the parabolic induction

by replacing σ(m) by σ(m)
∣∣detAdLie(N)(F )(m)

∣∣1/2 form ∈M(F ). This normalized induction
preserves unitary. However, for our applications, both parabolic inductions, the normalized
and the unnormalized one, work equally well.
[[todo: properly introduce normalized induction and state preservation of unitarity for
Tasho’s lecture series]]

This allows us to define supercuspidal representations.
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Definition 1.2.7. An irreducible smooth representation (π, V ) of G(F ) is called supercus-
pidal if for all proper parabolic subgroups P ⊊ G with Levi subgroup M and all irreducible
smooth representations (σ,W ) of M(F ) the representation (π, V ) is not a subrepresentation

of (Ind
G(F )
P (F ) σ, Ind

G(F )
P (F )W ).

The following fact explains why we call the supercuspidal representations the building blocks.

Fact 1.2.8. Let (π, V ) be an irreducible smooth representation of G. Then there exists a
parabolic subgroup P ⊆ G with Levi subgroup M and a supercuspidal representation (σ,W )

of M(F ) such that (π, V ) is a subrepresentation of (Ind
G(F )
P (F ) σ, Ind

G(F )
P (F )W ).

It is a folklore conjecture that all supercuspidal representations arise via compact induction
from a representation of a compact-mod-center open subgroup. In this survey we will out-
line how to construct all supercuspidal representations via compact induction under some
mild tameness assumptions. In order to do this, we will need to introduce some additional
structure theory. Though before doing so in the next section, let us mention the analogous
definition of supercuspidal representations in the finite group case for later use.

Definition 1.2.9. LetH be the Fq-points of a reductive group. An irreducible representation
(π, V ) of H is called cuspidal if the following equivalent conditions are satisfied:

(a) There does not exist a proper parabolic subgroup P = MN of H and a representa-
tion (σ,W ) of a Levi subgroup M such that V embeds into the induced representation
(IndH

P σ, Ind
H
P W ).

(b) There does not exist a proper parabolic subgroup P of H with unipotent radical N such
that the space of N -fixed vectors V N is non-trivial.

We conclude this section by stating an equivalent definition of supercuspidal representations,
for which we first introduce the contragredient representation.

Definition 1.2.10. Let (π, V ) be a smooth representation of G(F ). We denote by V ∗ the
dual vector space of V with the (often not smooth) representation π∗ given by

π∗(g)(λ)(v) = λ(π(g−1)v) for g ∈ G(F ), λ ∈ V ∗, v ∈ V.

The contragredient representation (π̃, Ṽ ) is the restriction of the representation (π∗, V ∗) to

the subspace of smooth vectors Ṽ :=
⋃

K(V
∗)K , where the union runs over all compact open

subgroups K of G(F ).

Fact 1.2.11. An irreducible smooth representations (π, V ) of G(F ) is supercuspidal if and
only if the image in G(F )/Z(G(F )) of the support of the function

G(F ) → C
g 7→ λ(π(g)v)

is compact for all v ∈ V, λ ∈ Ṽ , where Z(G(F )) denotes the center of G(F ). Equivalently,

we may ask this condition to be satisfied only for some 0 ̸= v ∈ V and 0 ̸= λ ∈ Ṽ .

5



AWS lecture notes Jessica Fintzen

2 Moy–Prasad filtration and Bruhat–Tits theory

The Moy–Prasad filtration is a decreasing filtration of G(F ) by compact open subgroups
that are normal inside each other and whose intersection is trivial. It is a refinement and
generalization of the congruence filtration of GLn(F ). One usually starts with the definition
of a Bruhat–Tits building that Bruhat and Tits ([BT72, BT84]) attached to the reductive
group G over F in 1972/1984, and then to each point in the Bruhat–Tits building, Moy and
Prasad ([MP94,MP96]) associated in 1994/1996 a filtration by compact open subgroups. In
this survey, we will take a different approach and first introduce the Moy–Prasad filtration
and use it to define the Bruhat–Tits building.

We first introduce some notation that we use throughout the remainder of the survey. For
every finite extension E of F , we denote the ring of integers of E by OE and a uniformizer
by ϖE. We might drop the index E if E = F . We also fix a valuation val : F ↠ Z ∪ {∞}.

2.1 The split case

We assume in this subsection that G is split over F . Let T be a split maximal torus of G
and denote by Φ(G, T ) the root system of G with respect to T . We recall that a Chevalley
system {Xα}α∈Φ(G,T ) consists of a non-trivial element Xα in the one dimensional F -vector
root subspace gα(F ) ⊂ g(F ) for each root α of G with respect to T such that

Ad(wβ)(Xα) = ±Xsβ(α) , ∀α, β ∈ Φ(G, T ),

where wβ is an element of the normalizer NG(T )(F ) of T in G determined by Xβ whose
image in the Weyl group (NG(T )/T )(F ) is the simple reflection sβ corresponding to β. For

example, if G = SL2 and Xβ =

(
0 1
0 0

)
, then wβ =

(
0 1
−1 0

)
. In general wβ is defined as

follows. For every root β, we let xβ : Ga
≃−→ Uβ be the isomorphism between the additive

group Ga and the root group Uβ ⊂ G attached to β whose derivative sends 1 ∈ F = Ga(F )
to Xβ. Then

wβ = xβ(1)x−β(ϵ)xβ(1)

where ϵ ∈ {±1} is the unique element for which xβ(1)x−β(ϵ)xβ(1) lies in the normalizer of
T .

For example, for GLn the collection {Xαi,j
}1≤i,j≤n;i ̸=j consisting of the matrices with all

entries zero except for a one at position (i, j) forms a Chevalley system.

This allows us to make the following definition, but we warn the reader that we have not
seen anyone else use the terminology “BT triple”.

Notation 2.1.1. A BT triple (T,Xα, xBT ) consists of

(i) a split maximal torus T of G,

(ii) a Chevalley system {Xα}α∈Φ(G,T ), and
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(iii) xBT ∈ X∗(T )⊗Z R := HomF (Gm, T )⊗Z R.

Here Gm denotes the multiplicative group scheme and HomF denotes homomorphisms in
the category of F -group schemes. Then X∗(T ) := HomF (Gm, T ) is a free Z-module, hence
X∗(T ) ⊗Z R is a finite-dimensional real vector space. Moreover, we have a bilinear pair-
ing between X∗(T ) := HomF (T,Gm) and X∗(T ) = HomF (Gm, T ) obtained by identifying
HomF (Gm,Gm) with Z. We extend this map R-linearly in the second factor to obtain a map

⟨·, ·⟩ : X∗(T )×X∗(T )⊗Z R → R.

In particular, we may pair xBT with a root α ∈ Φ(G, T ) to obtain a real number ⟨α, xBT ⟩.
We now fix a BT triple x = (T, {Xα}, xBT ) and define the Moy–Prasad filtration attached
to it.

Filtration of the torus.

We set
T (F )0 = {t ∈ T (F ) | val(χ(t)) = 0 ∀χ ∈ X∗(T ) = HomF (T,Gm)},

which is the maximal bounded subgroup of T (F ). For r ∈ R>0, we define

T (F )r = {t ∈ T (F )0 | val(χ(t)− 1) ≥ r ∀χ ∈ X∗(T )}.

For example, if G = GLn and T is the torus consisting of diagonal matrices, then T (F )0
consists of diagonal matrices whose entries are all in the invertible element O× of O and
T (F )r consists of diagonal matrices whose entries are all in 1 +ϖ⌈r⌉O, where we recall that
ϖ is a uniformizer of F .

Filtration of the root groups.

Let α ∈ Φ(G, T ). We recall that the isomorphism xα : Ga → Uα is defined by requiring its
derivative dxα to send 1 ∈ F = Ga(F ) to Xα. For r ∈ R≥0, we define the filtration subgroups
of Uα(F ) as follows

Uα(F )x,r := xα(ϖ
⌈r−⟨α,xBT ⟩⌉O).

Let us consider the example of G = SL2 and T the torus consisting of diagonal matrices.

Example 1. Let x1 be the Bruhat–Tits triple (T,

{(
0 1
0 0

)
,

(
0 0
1 0

)}
, 0). Let α correspond

to the map

(
t 0
0 t−1

)
7→ t2 for t ∈ F×. Then xα(y) =

(
1 y
0 1

)
for y ∈ F = Ga(F ) and

Uα(F )x1,r =

(
1 ϖ⌈r⌉O
0 1

)
and U−α(F )x1,r =

(
1 0

ϖ⌈r⌉O 1

)
.

Example 2. Let x2 be the Bruhat–Tits triple (T,

{(
0 1
0 0

)
,

(
0 0
1 0

)}
, 1
4
α̌), where α̌ is the

coroot of α, i.e., the element of X∗(T ) that satisfies α̌(t) =

(
t 0
0 t−1

)
for t ∈ F× = Gm(F ).

7
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Then

Uα(F )x2,r =

(
1 ϖ⌈r− 1

2⌉O
0 1

)
and U−α(F )x2,r =

(
1 0

ϖ⌈r+ 1
2⌉O 1

)
.

Filtration of G(F ).
We define the filtration subgroup G(F )x,r of G(F ) for r ∈ R≥0 to be the subgroup generated
by T (F )r and Uα(F )x,r for all roots α, i.e.

G(F )x,r = ⟨T (F )r, Uα(F )x,r |α ∈ Φ(G, T )⟩ .

If the ground field F is clear from the context, we may also abbreviate G(F )x,r by Gx,r.

In the example of G = SL2 for the two Bruhat–Tits triples above, we have for r > 0

Gx1,0 = SL2(O) , Gx1,r =

(
1 +ϖ⌈r⌉O ϖ⌈r⌉O
ϖ⌈r⌉O 1 +ϖ⌈r⌉O

)
det=1

and

Gx2,0 =

(
O O
ϖO O

)
det=1

, Gx2,r =

(
1 +ϖ⌈r⌉O ϖ⌈r− 1

2⌉O
ϖ⌈r+ 1

2⌉O 1 +ϖ⌈r⌉O

)
det=1

.

Filtration of g(F ) and g∗(F ) .
One can analogously define a filtration gx,r of the Lie algebra g(F ) and a filtration g∗x,r of the
F -linear dual g∗(F ) of the Lie algebra g(F ) as follows. Let r be a real number, and recall
that we write t for the Lie algebra of the torus T . Then we set

t(F )r = {X ∈ t(F ) | val(dχ(X)) ≥ r ∀χ ∈ X∗(T )},

where dχ denotes the derivative of χ,

gα(F )x,r = ϖ⌈r−⟨α,xBT ⟩⌉OXα ⊂ gα(F )

for α ∈ Φ(G, T ), and

g(F )x,r = t(F )r ⊕
⊕

α∈Φ(G,T )

gα(F )x,r.

We define the filtration subspace g∗(F )x,r of the dual of the Lie algebra by

g∗(F )x,r = {X ∈ g∗(F ) |X(Y ) ∈ ϖO for all Y ∈ g(F )x,s with s > −r}.

If the ground field F is clear from the context, we may also abbreviate g(F )x,r and g∗(F )x,r
by gx,r and g∗x,r, respectively.
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2.1.1 Properties of the Moy–Prasad filtration

Definition 2.1.2. A parahoric subgroup of G is a subgroup of the form Gx,0 for some BT
triple x.

For r ∈ R≥0, we write Gx,r+ =
⋃

s>rGx,s and gx,r+ =
⋃

s>r gx,s.

We collect a few facts about this filtration that demonstrate the richness of its structure.

Fact 2.1.3. Let x be a BT triple.

(a) Gx,r is a normal subgroup of Gx,0 for all r ∈ R≥0.

(b) The quotient Gx,0/Gx,0+ is the group of the Fq-points of a reductive group Gx defined
over the residue field Fq of F .

(c) For r ∈ R>0, the quotient Gx,r/Gx,r+ is abelian and can be identified with an Fq-vector
space.

(d) Let r > 0. Since Gx,r is a normal subgroup of Gx,0, the group Gx,0 acts on Gx,r via
conjugation. This action descends to an action of the quotient Gx,0/Gx,0+ on the vector
space Gx,r/Gx,r+ and the resulting action is (the Fq-points of) a linear algebraic action,
i.e., corresponds to a morphism from Gx to GLdimFq (Gx,r/Gx,r+) over Fq.

(e) We have the following isomorphism that is often referred to as the “Moy–Prasad iso-
morphism”: Gx,r/Gx,r+ ≃ gx,r/gx,r+ for r ∈ R>0 and more general Gx,r/Gx,s ≃ gx,r/gx,s
for r, s ∈ R>0 with 2r ≥ s > r.

In fact we have a rather good understanding of the representations occurring in (d). In
[Fin21b] they are described explicitly in terms of Weyl modules. Previously they were also
realized using Vinberg–Levy theory by Reeder and Yu ([RY14]), which was generalized in
[Fin21b].

2.1.2 The Bruhat–Tits building

Definition 2.1.4. The (reduced) Bruhat–Tits building B(G,F ) of G over F is as a set the
quotient of the set of BT triples by the following equivalence relation: Two BT triple x1 and
x2 are equivalent if and only if Gx1,r = Gx2,r for all r ∈ R≥0.

As a consequence of the definition, for x ∈ B(G, T ), we may write Gx,r for the Moy–Prasad
filtration attached to any BT triple in the equivalence class of x.

The Bruhat–Tits building B(G,F ) admits an action of G(F ) that is determined by the
property

Gg.x,r = gGx,rg
−1 ∀ r ∈ R≥0, g ∈ G(F ).

We will now equip the Bruhat–Tits building with more structure.

Apartments as affine spaces.
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Definition 2.1.5. For a split maximal torus T , we call the subset of B(G,F ) that can be
represented by BT triples whose first entry is the given torus T , i.e.

A (T, F ) := {(T, {Xα}, xBT )}/∼ ⊂ B(G,F )

the apartment of T .

We fix a split maximal torus T and a Chevalley system {Xα}α∈Φ(G,T ). Then it turns out
that every element in A (T, F ) can be represented by a BT triple whose first two entries
are the torus T and the fixed Chevalley system {Xα}α∈Φ(G,T ). Moreover, two BT triples
(T, {Xα}, xBT,1) and (T, {Xα}, xBT,2) are equivalent if and only if xBT,2 − xBT,1 lies in the
subspace X∗(Z(G)) ⊗ R, where Z(G) denotes the center of G. Note that X∗(Z(G)) ⊗ R
is trivial when the center Z(G) of G is finite. Thus the set A (T, F ) is isomorphic to
X∗(T )⊗R/X∗(Z(G))⊗R, and we use this isomorphism to equip A (T, F ) with the structure
of an affine space over the real vector spaceX∗(T )⊗R/X∗(Z(G))⊗R. While the isomorphism
of A (T, F ) with X∗(T ) ⊗ R/X∗(Z(G)) ⊗ R depends on the choice of the Chevalley system
{Xα}α∈Φ(G,T ), the structure of A (T, F ) as an affine space does not. In fact, the choice of a
Chevalley system turns the affine space into a vector space by choosing a base point.

Polysimplicial structure on apartments.

Let T be a split maximal torus of G. For α ∈ Φ(G, T ), we define the following set of
hyperplanes of the apartment A (T, F ):

Ψα :=

{
hyperplanes H ⊂ A (T, F ) satisfying

Uα(F )x,0 = Uα(F )y,0 ∀x, y ∈ H
Uα(F )x,0 ̸= Uα(F )x,0+ ∀x ∈ H

}
.

We set
Ψ :=

⋃
α∈Φ(G,T )

Ψα

and use these hyperplanes to turn the apartment A (T, F ) into the geometric realization of
a polysimplicial complex. This means the connected components of the complement of the
union of the hyperplanes in Ψ are the maximal dimensional polysimplices, which are also
called chambers.

Polysimplicial structure on the Bruhat–Tits building. The polysimplicial structure
on the apartments yields a polysimplicial structure on the Bruhat–Tits building B(G,F ),
which satisfies the properties of an abstract building. In order to recall the notion of an
abstract building, we need to introduce some notation following [KP23, §1.5].

A chamber complex is a polysimplicial complex B in which every facet is contained in a
maximal facet, called chamber, and given two chambers C and C ′ there exists a sequence
C = C1 ̸= C2 ̸= C3 ̸= . . . ̸= Cn = C ′ such that Ci ∈ B, Ci ∩ Ci+1 ∈ B and ̸ ∃C ′′ with
Ci ∩ Ci+1 ⊊ C ′′ ⊊ Ci or Ci ∩ Ci+1 ⊊ C ′′ ⊊ Ci+1. A chamber complex is called thick if each
facet of codimension one is the face of at least three chambers and is called thin if each facet
of codimension one is the face of exactly two chambers.
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Figure 1: Excerpt of an apartment for SL3 with hyperplanes, where αi,j is the root corre-
sponding to diag(t1, t2, t3) 7→ tit

−1
j

Definition 2.1.6 (see [KP23, Definition 1.5.5]). A building is a chamber complex B equipped
with a collection of subcomplexes, called apartments, satisfying the following axioms.

(i) B is a thick chamber complex.

(ii) Each apartment is a thin chamber complex.

(iii) Any two chambers belong to an apartment.

(iv) Given two apartments A1 and A2, and two facets F1,F2 ∈ A1 ∩ A2, there exits an
isomorphism A1 → A2 of chamber complexes that leaves invariant F1,F2 and all of
their faces.

Fact 2.1.7. The Bruhat–Tits building B(G,F ) with its apartments A (T, F ) attached to
maximal split tori T of G is a geometric realization of a building.

2.2 The non-split (tame) case

We first assume that G splits over an unramified Galois field extension E over F . In that
case all the above definitions can be descended to G by taking Gal(E/F )-fixed points of the

11
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corresponding objects for GE. More precisely, we set

G(F )x,r = G(E)Gal(E/F )
x,r ,

where G(E)x,r is defined using the valuation on E that extends the valuation val on F . As
in the split case, we may abbreviate G(F )x,r by Gx,r.

Via the action of Gal(E/F ) on G(E) and hence on its filtration subgroups, we obtain an
action of Gal(E/F ) on the Bruhat–Tits building B(G,E) and we define

B(G,F ) = B(G,E)Gal(E/F ).

More generally, if we only assume that G splits over a tamely ramified Galois field extension
E over F , then we have for r > 0

Gx,r = G(F )x,r = G(E)Gal(E/F )
x,r ,

where G(E)x,r is defined using the valuation on E that extends the valuation val on F

and Uα(E)x,r = xα(ϖ
⌈e(r−⟨α,xBT ⟩)⌉
E OE) with e the ramification index of the field extension E

over F . Defining the parahoric subgroup G(F )x,0 is slightly more subtle in general. It is a

finite index subgroup of G(E)
Gal(E/F )
x,0 . The parahoric subgroup G(F )x,0 being occasionally a

slightly smaller group than G(E)
Gal(E/F )
x,0 will ensure that G(F )x,0/G(F )x,0+ are the Fq-points

of a connected reductive group rather than a potentially disconnected group. More precisely,
the parahoric subgroup G(F )x,0 is defined by

Gx,0 = G(F )x,0 = G(E)
Gal(E/F )
x,0 ∩G(F )0

for some explicitly constructed normal subgroup G(F )0 ⊂ G(F ). We refer the interested
reader to the literature, e.g., [KP23], for the precise definition of G(F )0 and only note
that G(F )0 = G(F ) if G is simply connected semi-simple, e.g., for G = SLn we have
SLn(F )

0 = SLn(F ).

As in the unramified setting, using the action of Gal(E/F ) onG(E) and hence on its filtration
subgroups, we obtain an action of Gal(E/F ) on the Bruhat–Tits building B(G,E) and we
define

B(G,F ) = B(G,E)Gal(E/F ).

Similarly, we have for the Lie algebra

gx,r = g(F )x,r = (g(E)x,r)
Gal(E/F ).

We note that the above definitions rely on the extension E over F being tame, but are
independent of the choice of E.

12
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Aside 2.2.1. If G splits only over a wildly ramified extension E/F , then the space of fixed
vectors of the Galois action on the Bruhat–Tits building over E might be larger than the
Bruhat–Tits building defined over F . We will not introduce the Bruhat–Tits building in
that generality in this survey since we mostly restrict to the tame case, and we instead
refer the interested reader to the literature, e.g., the original articles by Bruhat and Tits
([BT72,BT84]) and the recent book on this topic by Kaletha and Prasad [KP23].

The Moy–Prasad filtration still satisfies the nice properties as in Fact 2.1.3, i.e., more pre-
cisely

Fact 2.2.2. Let x ∈ B(G,F ).

(a) Gx,r is a normal subgroup of Gx,0 for all r ∈ R≥0.

(b) The quotient Gx,0/Gx,0+ is the group of the Fq-points of a reductive group Gx defined
over the residue field Fq of F .

(c) For r ∈ R>0, the quotient Gx,r/Gx,r+ is abelian and can be identified with an Fq-vector
space.

(d) Let r > 0. Since Gx,r is a normal subgroup of Gx,0, the group Gx,0 acts on Gx,r via
conjugation. This action descends to an action of the quotient Gx,0/Gx,0+ on the vector
space Gx,r/Gx,r+ and the resulting action is (the Fq-points of) a linear algebraic action,
i.e., corresponds to a morphism from Gx to GLdimFq (Gx,r/Gx,r+) over Fq.

(e) Under the assumption that G splits over a tamely ramified field extension of F , we have
the following “Moy–Prasad isomorphism”: Gx,r/Gx,r+ ≃ gx,r/gx,r+ for r ∈ R>0 and
more general Gx,r/Gx,s ≃ gx,r/gx,s for r, s ∈ R>0 with 2r ≥ s > r.

Definition 2.2.3. For a maximal split torus S of G, we choose a maximal torus T ⊂ G
containing S and call the subset A (S, F ) := A (T,E)Gal(E/F ) of B(G,F ), sometimes also
denoted by A (T, F ), the apartment of S (or of T ).

Note that A (S, F ) = A (T,E)Gal(E/F ) is independent on the choice of maximal torus T
containing S, i.e., the apartment of S is well defined. The apartment A (S, F ) is an affine
space over the real vector space X∗(S) ⊗ R/X∗(Z(G)) ⊗ R. We will equip the apartment
with a polysimplicial structure analogous to the split case.

To do this, let S be a maximal split torus of G and T a maximal torus of G containing S
that splits over a tame extension E of F . We denote by Φ(G,S) the relative root system,
i.e., the restrictions of the (absolute) roots Φ(G, T ) ⊂ X∗(TE) to S that are non-trivial,
or in other words the non-trivial weights of the action of S on the Lie algebra of G. For
a ∈ Φ(G,S), we have the root group Ua, which is the unique smooth closed subgroup of G
that is normalized by S and on whose Lie algebra S acts by positive integer multiples of a.

13
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We have Ua(F ) = (
∏

α Uα(E))
Gal(E/F ), where α runs over the roots of Φ(G, T ) that restrict

to a positive integer multiple of a. We set

Ua,x,r :=

(∏
α

Uα(E)x,r

)Gal(E/F )

for r ∈ R≥0 using the same normalization as for the definition of Gx,r above.

Now we can define a set of hyperplanes of the apartment A (S, F ) for a ∈ Φ(G,S):

Ψa :=

{
hyperplanes H ⊂ A (S, F ) satisfying

Ua,x,0 = Ua,y,0 ∀x, y ∈ H
Ua,x,0 ̸= Ua,x,0+ ∀x ∈ H

}
.

We set
Ψ :=

⋃
a∈Φ(G,S)

Ψa

and use these hyperplanes to turn the apartment A (S, F ) into the geometric realization of
a polysimplicial complex. This polysimplicial structure on the apartments yields a polysim-
plicial structure on the Bruhat–Tits building B(G,F ) and as in the split case, we have the
following result.

Fact 2.2.4. The Bruhat–Tits building B(G,F ) with its apartments A (S, F ) attached to
maximal split tori S of G is a geometric realization of a building.

We record the following fact that will become useful later when constructing supercuspidal
representations.

Fact 2.2.5. Let x, y ∈ A (S, F ) ⊂ B(G,F ). Then the image of Gx,0 ∩Gy,0 in Gy,0/Gy,0+ is
a parabolic subgroup Px,y and the image of Gx,0+∩Gy,0 in Gy,0/Gy,0+ is the unipotent radical
of Px,y. If x ̸= y and y is a vertex, i.e., a polysimplex of minimal dimension, then Px,y is a
proper parabolic subgroup.

2.3 The enlarged Bruhat–Tits building

In some circumstances it is more convenient to work with the enlarged Bruhat–Tits building.
The enlarged Bruhat–Tits building B̃(G,F ) is defined as the product of the reduced Bruhat–
Tits building B(G,F ) with X∗(Z(G))⊗Z R, i.e.,

B̃(G,F ) = B(G,F )×X∗(Z(G))⊗Z R.

This means that if the center of G is finite, then the reduced and the non-reduced Bruhat–
Tits buildings are the same. In general, an important difference is that stabilizers in G(F )
of points in the enlarged Bruhat–Tits building are compact while stabilizers of points in the
reduced Bruhat–Tits building contain the center of G(F ) and are compact-mod-center. For

the enlarged building, the apartments Ã (S, F ) correspond to maximal split tori S and are

affine spaces under the action of X∗(S) ⊗Z R. For a point x ∈ B̃(G,F ) we denote by [x]
the image of x in B(G,F ) (by projection to the first factor) and we define Gx,r := G[x],r for
r ∈ R≥0 and gx,r := g[x],r and g∗x,r := g∗[x],r for r ∈ R.

14
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2.4 The depth of a representation

The Moy–Prasad filtration allows us to introduce the notion of the depth of an irreducible
smooth representation, initially defined by Moy and Prasad in [MP94,MP96]. Our definition
is slightly different but equivalent to theirs.

Definition 2.4.1. Let (π, V ) be an irreducible smooth representation of G. The depth of
(π, V ) is the smallest non-negative real number r such that V Gx,r+ ̸= {0} for some x ∈
B(G,F ).

3 Construction of supercuspidal representations

3.1 A non-exhaustive overview of some historic developments

In 1977, a Symposium in Pure Mathematics was held in Corvallis that led to famous Pro-
ceedings. One of the articles in the Proceedings was entitled “Representations of p-adic
groups: A survey”, written by Cartier ([Car79b]). We quote from the introduction of this
article:

“The main goal of this article will be the description and study of the principal
series and the spherical functions. There shall be almost no mention of two im-
portant lines of research which are still actively pursued today:
(a) [...]
(b) Explicit construction of absolutely cuspidal representations [nowadays usu-
ally called “supercuspidal representations”]. Here important progress has been
made by Shintani [Shi68], Gérardin [Gér75] and Howe (forthcoming papers in the
Pacific J. Math.). One can expect to meet here difficult and deep arithmetical
questions which are barely uncovered.”

Since then, mathematicians have tried to construct the mysterious supercuspidal representa-
tions. To mention a few, in 1979, Carayol ([Car79a]) gave a construction of all supercuspidal
representations of the general linear group GLn(F ) for n a prime number different from p,
the residue field characteristic of F . In 1986, Moy ([Moy86a]) proved that Howe’s construc-
tion ([How77]) from the 1970s exhausts all supercuspidal representations of GLn(F ) if n is
coprime to p. In the early 1990s, Bushnell and Kutzko extended these constructions to ob-
tain all supercuspidal representations of GLn(F ) and SLn(F ) for arbitrary n ([BK93,BK94]).
Similar methods have been exploited by Stevens ([Ste08]) around 15 years ago to construct
all supercuspidal representations of classical groups for p ̸= 2, i.e., orthogonal, symplectic
and unitary groups. His work was preceded by a series of partial results by Moy ([Moy86b]
for U(2, 1), [Moy88] for GSp4), Morris ([Mor91] and [Mor92]) and Kim ([Kim99]). Moreover,
Zink ([Zin92]) treated division algebras over non-archimedean local fields of characteristic
zero, Broussous ([Bro98]) treated division algebras without restriction on the characteristic,
and Sécherre and Stevens ([SS08]) completed the case of all inner forms of GLn(F ) about 15
years ago.
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In order to achieve progress for arbitrary reductive groups, the work of Moy and Prasad
based on the work of Bruhat and Tits, introduced in Section 2, was pivotal. The Moy–
Prasad filtration allowed Moy and Prasad introduced in [MP94, MP96] to introduce the
notion of depth of a representation, see Definition 2.4.1, and gave a classification of depth-zero
representations. Moy and Prasad showed, roughly speaking, that depth-zero representations
correspond to representations of finite groups of Lie type. A similar result was obtained
shortly afterwards using different techniques by Morris ([Mor99]). We will discuss depth-
zero representations in more detail in Section 3.3.

In 1998, Adler ([Adl98]) used the Moy–Prasad filtration to suggest a construction of positive-
depth supercuspidal representations for general p-adic groups that split over a tamely ram-
ified extension of F , which was generalized by Yu ([Yu01]) in 2001. Since then, Yu’s con-
struction has been widely used in the representation theory of p-adic groups as well as for
applications thereof. We will sketch Yu’s construction in Section 3.8.

Kim ([Kim07]) achieved the subsequent breakthrough in 2007 by proving that if F has char-
acteristic zero and the prime number p is “very large”, then all supercuspidal representations
arise from Yu’s construction. Recently, in 2021, Fintzen ([Fin21d]) has shown via very differ-
ent techniques that Yu’s construction provides us with all supercuspidal representations only
under the minor assumption that p does not divide the order of the absolute Weyl group of
the (tame) p-adic group. In particular, the result also holds for fields F of positive charac-
teristic. Based on [Fin21c], we expect this result to be essentially optimal (when considering

type An (n ≥ 1) Bn, Cn (n ≥ 2) Dn (n ≥ 3) E6 E7

order (n+ 1)! 2n · n! 2n−1 · n! 27 · 34 · 5 210 · 34 · 5 · 7
type E8 F4 G2

order 214 · 35 · 52 · 7 27 · 32 22 · 3

Table 1: Order of irreducible Weyl groups ([Bou02, VI.4.5-VI.4.13])

also types for non-supercuspidal Bernstein blocks and treating all inner forms together), and
it is exciting research in progress to construct the remaining supercuspidal representations
for small primes. For this survey, we will focus on the known construction of supercuspidal
representations under the assumption that p does not divide the order of the absolute Weyl
group.

However, it was recently suggested by Fintzen, Kaletha and Spice ([FKS23]) to twist Yu’s
construction by a quadratic character, i.e., a character of an appropriate compact open
subgroup appearing in the construction of supercuspidal representations that takes values in
{±1}, see Section 3.10. While on first glance this just looks like changing the parametrization
of supercuspidal representations, the existence of the quadratic character has far-reaching
consequences. For example, it allowed to calculate formulas for the Harish-Chandra character
of these supercuspidal representations ([FKS23, Spi]), to specify a candidate for the local
Langlands correspondence for non-singular supercuspidal representations ([Kal]) and to prove
that the local Langlands correspondence for regular supercuspidal representations introduced
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by Kaletha ([Kal19]) satisfies the desired character identities ([FKS23]). It is also crucial for
obtaining isomorphisms between Hecke algebras attached to Bernstein blocks of arbitrary
depth and those of depth-zero ([AFMOa,AFMOb]), the topic discussed below in Section 4.7.

3.2 Generalities about the construction of supercuspidal representations

All representations are always taken to be smooth and to have complex coefficients unless
stated otherwise. Possible references for the facts discussed below include [BH06, DeB16,
Ren10,Vig96].

It is a folklore conjecture that all supercuspidal irreducible representations arise via compact
induction from a representation of a compact-mod-center open subgroup of G(F ), and all
constructions mentioned above proceed in this way. It is a nice exercise to use Fact 1.2.11
to deduce the following lemma.

Lemma 3.2.1. Let K be a compact-mod-center open subgroup of G(F ) and let ρ be an

irreducible representation of K. If the compact induction c-ind
G(F )
K ρ of ρ from K to G(F )

is irreducible, then c-ind
G(F )
K ρ is a supercuspidal representation of G(F ).

Thus in order to construct supercuspidal representations, it suffices to construct pairs (K, ρ)
of compact-mod-center open subgroups and irreducible representations thereof such that
c-ind

G(F )
K ρ is irreducible. The standard approach to show the latter is via Lemma 3.2.3

below, which we will demonstrate in examples below. In order to state the fact, we need to
introduce some notation.

Let K be a compact-mod-center open subgroup of G(F ) that contains the center Z(G(F ))
of G(F ) and let (ρ,W ) be a smooth representation of K.

Notation 3.2.2. For g ∈ G(F ), we write gρ for the representation of gK := gKg−1 satisfying
gρ(h) = ρ(g−1hg) for h ∈ gK.

We say that g intertwines (ρ,W ) if HomgK∩K(
gρ|gK∩K , ρ|gK∩K) ̸= {0}.

Lemma 3.2.3. Let K be an open subgroup of G(F ) that contains and is compact modulo
the center Z(G(F )) of G(F ). Let (ρ,W ) be an irreducible representation of K. Suppose

g ∈ G(F ) intertwines (ρ,W ) if and only if g ∈ K. Then c-ind
G(F )
K ρ is irreducible.

In order to prove this lemma, let us note a helpful result, the Mackey decomposition, whose
proof is a nice exercise using the definition of the compact induction.

Lemma 3.2.4 (Mackey decomposition). If K ′ is a compact-mod-center open subgroup of

G(F ), then the restriction of c-ind
G(F )
K ρ to K ′ decomposes as a representation of K ′ as

follows

(c-ind
G(F )
K ρ)|K′ =

⊕
g∈K′\G(F )/K

c-indK′
gK∩K′

gρ|gK∩K′ .
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Proof. Left to the reader.

Proof of Lemma 3.2.3. First note that (ρ,W ) is aK-subrepresentation of
((

c-ind
G(F )
K ρ

)
|K ,

c-ind
G(F )
K W

)
via the embedding

w 7→ fw : g 7→

{
ρ(g)w g ∈ K

0 g /∈ K
,

and the image of W in c-ind
G(F )
K W under this embedding generates the latter as a G(F )-

representation. We claim that this is up to scalar the only embedding of ρ into
(
c-ind

G(F )
K ρ

)
|K .

This follows from:

HomK

(
ρ, (c-ind

G(F )
K ρ)|K

)
≃

⊕
g∈K\G(F )/K

HomK

(
ρ, c-indK

gK∩K
gρ|gK∩K

)
≃

⊕
g∈K\G(F )/K

HomgK∩K (ρ|gK∩K ,
gρ|gK∩K)

= HomK (ρ|K∩K , ρ|K∩K) ≃ C,

where the first isomorphism results from the Mackey decomposition (Lemma 3.2.4) and the
second from Frobenius reciprocity as the involved compact induction agrees with the smooth
induction.

Suppose now that V ⊂ c-ind
G(F )
K W is a non-trivial G(F )-subrepresentation. This implies

{0} ̸≃ HomG

(
V, c-ind

G(F )
K W

)
⊂ HomG

(
V, Ind

G(F )
K W

)
≃ HomK(V,W ),

where Ind denotes the smooth induction. Note that Z(G(F )) acts via the central character

of ρ on c-ind
G(F )
K W and hence on V . Thus, as a K-representation, V is a direct sum of

irreducible K-representations. Therefore the above observation HomK(V,W ) ̸≃ {0} implies
that W is isomorphic to a subrepresentation of V . By the uniqueness up to scalar of the
embedding of W into c-ind

G(F )
K W as K-representations, we deduce that V contains the

above image of W , which generates c-ind
G(F )
K W as a G(F )-representation. Since V is a

G(F )-representation, we obtain V = c-ind
G(F )
K W .

3.3 Depth-zero supercuspidal representations

In this section, we consider the special case of depth-zero supercuspidal representations. The
following theorem is due to Moy and Prasad ([MP94,MP96]) and a different proof was later
given by Morris ([Mor99]).

Theorem 3.3.1 ([MP94,MP96,Mor99]). Let x ∈ B(G,F ) be a vertex. Let (ρ, Vρ) be an
irreducible smooth representation of the stabilizer Gx of x that is trivial on Gx,0+ and such

that ρ|Gx,0 is a cuspidal representation of the reductive group Gx,0/Gx,0+. Then c-ind
G(F )
Gx

ρ
is a supercuspidal irreducible representation of G(F ).
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The above authors also showed that all depth-zero supercuspidal (irreducible smooth) rep-
resentations are of the form as in Theorem 3.3.1.

Remark 3.3.2. Requiring that ρ|Gx,0 is a cuspidal representation in Theorem 3.3.1 is equiv-
alent to asking that ρ|Gx,0 contains an irreducible, cuspidal representation of Gx,0/Gx,0+,
because ρ|Gx,0 is a direct sum of irreducible representations that are transitively permuted
by the action of Gx.

Proof of Theorem 3.3.1.
By Lemmata 3.2.1 and 3.2.3 it suffices to show that an element g ∈ G(F ) intertwines (ρ, Vρ)
if and only if g ∈ Gx. Since all g ∈ Gx intertwine (ρ, Vρ), it remains to show the other
direction of the implication. Hence we assume g ∈ G(F ) intertwines (ρ, Vρ), i.e., we can
choose a nontrivial element

f ∈ HomGx∩gGxg−1(gσ, σ) ̸≃ {0}.

Since σ is trivial when restricted to Gx,0+, the representation gσ is trivial when restricted
to gGx,0+g

−1 = Gg.x,0+. Hence Gg.x,0+ ∩ Gx,0 acts trivially on the image Im(f) of f . If
g /∈ Gx, then g.x ̸= x and hence by Fact 2.2.5, the image of Gg.x,0+ ∩ Gx,0 in Gx,0/Gx,0+ is
the unipotent radical N of a proper parabolic subgroup of Gx,0/Gx,0+. Thus

{0} ̸≃ Im(f) ⊂ V N
ρ ,

which contradicts that (ρ, Vρ) is cuspidal.

3.4 An example of a positive-depth supercuspidal representations

From now on we fix an additive character φ : F → C× (i.e., a group homomorphism from
the group F (equipped with addition) to the group C× (equipped with multiplication)) that
is nontrivial on O and trivial on ϖO.

We start with an example of a positive-depth supercuspidal representation that we will step-
wise generalize. Let G = SL2. Consider the point x2 ∈ B(SL2, F ) introduced in Example 2
on page 7, which is the unique point x2 for which

Gx2,r =

(
1 +ϖ⌈r⌉O ϖ⌈r− 1

2⌉O
ϖ⌈r+ 1

2⌉O 1 +ϖ⌈r⌉O

)
det=1

for r ∈ R>0.

Let K = {± Id}Gx2,
1
2
. We define the representation (ρ,C), i.e., the morphism ρ : K → C×

by requiring

ρ(± Id) = 1 and ρ

((
1 +ϖa b
ϖc 1 +ϖd

))
= φ(b+ c)

for all a, b, c, d ∈ O with (1 +ϖa)(1 +ϖd)−ϖbc = 1. Note that ρ is trivial on Gx2,
1
2
+, i.e.,

factors through K/Gx2,
1
2
+.
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Fact 3.4.1. The representation c-ind
SL2(F )
K ρ is a supercuspidal irreducible representation of

depth 1
2
.

If p ̸= 2, this is a very special case of Yu’s construction as we will see below. This construction
also works for p = 2 and is an example of a simple supercuspidal representation introduced by
Gross and Reeder ([GR10, §9.3]), which in turn are special cases of epipelagic representations
as introduced by Reeder and Yu ([RY14]), which are representations of smallest positive
depth. More precisely, for x ∈ B(G,F ), let r(x) be the smallest positive real number for
whichGx,r(x) ̸= Gx,r(x)+. Then an irreducible representation (π, V ) is called epipelagic if there
exists x ∈ B(G,F ) such that V Gx,r(x)+ is non-trivial and (π, V ) has depth r(x) ([RY14, §2.5]).

3.5 Generic characters

In order to generalize the example of the previous subsection and to eventually present Yu’s
general construction of supercuspidal representations, we need the notion of twisted Levi
subgroups and generic characters.

Definition 3.5.1. A subgroup G′ of G is a twisted Levi subgroup if G′
E is a Levi subgroup

of GE for some finite field extension E over F .

If G′ is a twisted Levi subgroup of G, and we assume that G′ splits over a tamely ramified field
extension of F , then we have an embedding of the enlarged Bruhat–Tits building B̃(G′, F )

of G′ into the enlarged Bruhat–Tits building B̃(G,F ) of G. This embedding is unique up to
translation by X∗(Z(G

′))⊗Z R, and its image is independent of the embedding. We will fix

such embeddings when working with twisted Levi subgroups to view B̃(G′, F ) as a subset

of B̃(G,F ).

In order to define generic characters (following [Fin22, §2.1], which is based on [Yu01, §9], but
is slightly more general for small primes, see [Fin22, Remark 2.2] for details), we first define
the notion of generic elements in the dual of the Lie algebra and then use the Moy–Prasad
isomorphism to obtain the notion of generic characters.

We denote by Φ(G, T ) the absolute root system of G with respect to T , i.e., the roots of GF̄

with respect to TF̄ , where F̄ denotes a separable closure of F . We also extend the valuation
val on F to a valuation val : F̄ → Q ∪ {∞} on F̄ and denote by OF̄ all the elements of F̄
with non-negative or infinite valuation.

Let G′ ⊆ G be a twisted Levi subgroup that splits over a tamely ramified field extension of
F , and denote by (Lie∗(G′))G

′
the subscheme of the linear dual of the Lie algebra Lie(G′) of

G′ fixed by (the dual of) the adjoint action of G′.

Definition 3.5.2. Let x ∈ B̃(G′, F ) and r ∈ R>0.

(a) An elementX of (Lie∗(G′))G
′
(F ) ⊂ Lie∗(G′)(F ) is calledG-generic of depth r (or (G,G′)-

generic of depth r) if the following three conditions hold.
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(GE0) For some (equivalently, every) point x ∈ B̃(G′, F ), we have X ∈ Lie∗(G′)x,r ∖
Lie∗(G′)x,r+.

(GE1) val(X(Hα)) = r for all α ∈ Φ(G, T ) ∖ Φ(G′, T ) for some (equivalently, every)
maximal torus T of G′, where Hα := dα̌(1) ∈ g(F̄ ) with dα̌ the derivative of the
coroot α̌ ∈ X∗(TF̄ ) of α.

(GE2) GE2 of [Yu01, §8] holds, which we recall below and which is implied by (GE1) if p
does not divide the order of the absolute Weyl group of G.

(b) A character ϕ of G′(F ) is called G-generic (or (G,G′)-generic) relative to x of depth r if
ϕ is trivial on G′

x,r+ and the restriction of ϕ to G′
x,r/G

′
x,r+ ≃ g′x,r/g

′
x,r+ is given by φ ◦X

for some element X ∈ (Lie∗(G′))G
′
(F ) that is (G,G′)-generic of depth −r.

The equivalence in (GE0) is proven in [Fin22, Lemma 2.3].

In order to explain Condition (GE2), let X ∈ (Lie∗(G′))G
′
(F ) ⊂ Lie∗(G′)(F ) satisfy (GE0)

and (GE1) for a maximal torus T of G′. We denote by Xt the restriction of X to t(F̄ )
and choose an element ϖr of valuation r in F̄ . Then, under the identification of t∗(F̄ ) with
X∗(TF̄ ) ⊗Z F̄ , the element 1

ϖr
Xt is contained in X∗(TF̄ ) ⊗Z OF̄ , and we denote its image

under the surjection X∗(TF̄ ) ⊗Z OF̄ ↠ X∗(TF̄ ) ⊗Z F̄q by X̄t. Now we can state Condition
(GE2):

(GE2) The subgroup of the absolute Weyl group of G that fixes X̄t is the absolute Weyl group
of G′.

Remark 3.5.3. By [Yu01, Lemma 8.1], Condition (GE1) implies (GE2) if p is not a torsion
prime for the dual root datum of G, i.e., in particular, if p does not divide the order of the
absolute Weyl group of G.

Remark 3.5.4. It is work in progress to construct supercuspidal representations for a more
general notion of “generic” that does not require (GE2) to be satisfied (and only requires a
weaker version of (GE1)).

Remark 3.5.5. If a character ϕ of G′(F ) is (G,G′)-generic relative to x of depth r, then it

is also (G,G′)-generic relative to x′ of depth r for every x′ ∈ B̃(G′, F ) , i.e., the notion of
genericity does not depend on the choice of point x ([AFMOb, Lemma 3.3.1]).

Remark 3.5.6. We caution the reader that an element in Lie∗(G′)(F ) that is G-generic of
depth r is sometimes called “G-generic of depth −r” in the literature (e.g., in [Yu01, §8] and
[Fin22, §2.1]). However, such an element has depth r, in the sense of it being contained in
Lie∗(G′)x,r ∖ Lie∗(G′)x,r+, and therefore the latter convention has led to some confusion in
the literature in the past.

Remark 3.5.7. Usually the notion of “(G,G′)-generic” is only defined for G′ ⊊ G. However,
sometimes it is convenient to also consider the case G′ = G, see, e.g., [AFMOb], and in this

21



AWS lecture notes Jessica Fintzen

case our definition implies that a (G,G)-generic character of depth r has indeed depth r.
In particular, we do not consider the trivial character a (G,G)-generic character of depth r.
This differs from Yu’s convention in [Yu01, § 15, p. 616] where he considers trivial characters
as G-generic of depth r. We have chosen the above more restrictive definition of (G,G)-
generic characters of depth r as it allows to construct more uniformly representations of
depth r from a (G,G′)-generic character of depth r without having to treat the case G = G′

separately.

To provide some examples of generic characters, we consider the case that F = Q7, G = GL2

and G′ is the diagonal torus T ⊂ GL2. We let ψ : Q×
7 → C× be a character of depth 1. Then

the following three characters(
t1 0
0 t2

)
7→ ψ(t1) and

(
t1 0
0 t2

)
7→ ψ(t2) and

(
t1 0
0 t2

)
7→ ψ(t1t

−1
2 )

are (G, T )-generic of depth 1 relative to any point x ∈ B̃(T,Q7) ⊂ B̃(G,Q7). The two
characters (

t1 0
0 t2

)
7→ ψ(t1t2) and

(
t1 0
0 t2

)
7→ ψ(t1t

−6
2 )

are also of depth 1 relative to any point x ∈ B̃(T,Q7) ⊂ B̃(G,Q7), but they are not
(G, T )-generic of depth 1.

3.6 More examples of positive-depth supercuspidal representations

We will now use generic characters to provide a construction of supercuspidal representations
of positive depth that generalizes the example provided in Section 3.4 and have arbitrary
large depth. As input for the construction we take the following data

(a) S ⊂ G an elliptic maximal torus of G that splits over tamely ramified extension E of F ,

(b) x ∈ B̃(S, F ) ⊂ B̃(G,F ),

(c) r ∈ R>0 such that Gx, r
2
= Gx, r

2
+,

(d) ϕ : S(F ) → C× a character that is (G,S)-generic relative to x of depth r.

The supercuspidal representation that we construct from this input is of the form c-ind
G(F )
K ϕ̂

with K = S(F )Gx, r
2
and ϕ̂ the extension of ϕ obtained by “sending the root groups to 1”.

More precisely, ϕ̂ is the unique character of S(F )Gx, r
2
that satisfies

(i) ϕ̂|S(F ) = ϕ, and
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(ii) ϕ̂|Gx, r2
factors through

Gx, r
2
= Gx, r

2
+ ↠ Gx, r

2
+/Gx,r+ ≃ gx, r

2
+/gx,r+ = (s(F )⊕ r(F ))x, r

2
+/(s(F )⊕ r(F ))x,r+

↠ sx, r
2
+/sx,r+ ≃ Sx, r

2
+/Sx,r+,

on which it is induced by ϕ|Sx, r2+
, where the subspace r(F ) of root subspaces is defined

to be
r(F ) = g(F ) ∩

⊕
α∈Φ(G,S)

g(E)α,

and the surjection s(F )⊕ r(F ) ↠ s(F ) sends r(F ) to zero. The isomorphisms used are
the Moy–Prasad isomorphisms from Fact 2.2.2(e).

Fact 3.6.1. The representation c-ind
G(F )
S(F )Gx, r2

ϕ̂ is a supercuspidal irreducible representation

of depth r.

The construction of these representations is a special case of the construction of supercuspidal
representations provided by Adler ([Adl98]) that was later generalized by Yu ([Yu01]). (These
references impose a condition on p, but this is not necessary for the above special case.)

We recover the representation constructed in Section 3.4 under the assumption that p ̸= 2
from the following input

(a) S ⊂ SL2 is the torus that satisfies for every field extension F ′ of F

S(F ′) =

{(
a b
ϖb a

)
∈ SL2(F

′) | a, b ∈ F ′
}
.

Then S splits over the quadratic extension F (
√
ϖ) of F .

(b) The Bruhat–Tits building B(SL2, F ) = B̃(SL2, F ) is an infinite tree of valency |Fq|+ 1

and the Bruhat–Tits building B(S, F ) = B̃(S, F ) of S is a single point that embeds
into B(SL2,Qp) as the barycenter x of an edge, see Figure 2. Hence there is a unique

choice for x ∈ B̃(S, F ) ⊂ B̃(G,F ).

(c) We let r = 1
2
.

(d) We define ϕ : S(F ) → C× by

ϕ

((
a b
ϖb a

))
= φ(2b).

Then ϕ is (SL2, S)-generic of depth 1
2
.
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Figure 2: Excerpt of the Bruhat–Tits building B(SL2,Q3)

Remark 3.6.2. Since S is an elliptic maximal torus of G, the building B̃(S, F ) is equal to
x + X∗(S) ⊗Z R = x + X∗(Z(G)) ⊗Z R, where we recall that X∗(?) = HomF (Gm, ?), and

hence the choice of x ∈ B̃(S, F ) has no influence on the construction. Moreover, the real
number r is just the depth of ϕ, i.e., can be read off from ϕ. Thus, the actual input for the
above construction consists only of the pair (S, ϕ).

We will now generalize this construction to allow the case Gx, r
2
̸= Gx, r

2
+, which Yu has dealt

with using the theory of Heisenberg–Weil representations and which is why he assumes p ̸= 2,
and to allow a more general sequence of twisted Levi subgroups instead of only S ⊂ G.

3.7 The input for the construction by Yu

We assume from now on that p ̸= 2. For a generalization of the below construction of
supercuspidal representations that also works if p = 2 we refer the reader to [FS].

The input for the construction of supercuspidal representations by Yu (following the notation
of [Fin21a]) is a tuple ((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ

0, (ϕi)1≤i≤n) for some non-negative integer
n where

(a) G = G1 ⊇ G2 ⊋ G3 ⊋ . . . ⊋ Gn+1 are twisted Levi subgroups of G that split over a
tamely ramified extension of F ,

(b) x ∈ B̃(Gn+1, F ) ⊂ B̃(G,F ),

(c) r1 > r2 > . . . > rn > 0 are real numbers,

(d) ϕi, for 1 ≤ i ≤ n, is a character (i.e., a one-dimensional representation) of Gi+1(F ) of
depth ri,

(e) ρ0 is an irreducible representation of (Gn+1)[x] that is trivial on (Gn+1)x,0+,

satisfying the following conditions
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(i) Z(Gn+1)/Z(G) is anisotropic, i.e., its F -points are a compact group,

(ii) the image [x] of the point x in B(Gn+1, F ) is a vertex, i.e., a polysimplex of minimal
dimension,

(iii) ϕi is (Gi, Gi+1)-generic relative to x of depth ri for all 1 ≤ i ≤ n,

(iv) ρ0|(Gn+1)x,0 is a cuspidal representation of the reductive group (Gn+1)x,0/(Gn+1)x,0+.

We will call a tuple satisfying the above conditions a supercuspidal datum.

Aside 3.7.1. Our conventions for the notation (following [Fin21a]) differ slightly from those
in [Yu01]. In particular, Yu’s notation for the twisted Levi sequence is G0 ⊊ G1 ⊊ G2 ⊊
. . . ⊊ Gd. The reader can find a translation between the two different notations in [Fin21a,
Remark 2.4] and in Remark 4.6.1 for the reverse direction.

Example of a supercuspidal datum. We provide an example of a supercuspidal datum
for the group G = SL2 with p an odd prime. We let n = 1.

(a) We have G1 = G and let G2 = S be the non-split torus S ⊂ SL2 that satisfies

S(F ′) =

{(
a b
ϖb a

)
∈ SL2(F

′) | a, b ∈ F ′
}

for all field extensions F ′ of F .

(b) The point x is the unique point of B̃(S, F ) ⊂ B̃(G,F ).

(c) We let r1 =
1
2
.

(d) We define ϕ1 : S(F ) → C× by ϕ1

((
a b
ϖb a

))
= φ(2b).

(e) S[x] = S(F ) = {± Id} × Sx,0+ and we let ρ0 be the trivial representation on a one-
dimensional vector space.

The supercuspidal representation constructed from this supercuspidal datum following the
recipe in the next subsection turns out to be the representation described in Section 3.4.

3.8 The construction of supercuspidal representations à la Yu

In this section we outline how Yu ([Yu01]) constructs from a supercuspidal datum

((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ
0, (ϕi)1≤i≤n)

a compact-mod-center open subgroup K̃ and a representation ρ̃ of K̃ such that c-ind
G(F )

K̃
ρ̃

is an irreducible supercuspidal representation of G(F ).
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The compact-mod-center open subgroup K̃ is given by

K̃ = (G1)x, r1
2
(G2)x, r2

2
. . . (Gn)x, rn

2
(Gn+1)[x],

where (Gn+1)[x] denotes the stabilizer in Gn+1(F ) of the point [x] in the (reduced) Bruhat–
Tits building B(Gn+1, F ).

The representation ρ̃ is a tensor product of two representations ρ0 and κnt,

ρ̃ = ρ0 ⊗ κnt,

where ρ0 also denotes the extension of the representation ρ0 of (Gn+1)[x] to K̃ that is trivial on
(G1)x, r1

2
(G2)x, r2

2
. . . (Gn)x, rn

2
. The representation κnt is built out of the characters ϕ1, . . . , ϕn.

If n = 0, then κnt is trivial and we are in the setting of depth-zero representations.

Remark 3.8.1. In the literature κnt is often denoted by κ. We have chosen to add the
superscript “nt” to indicate that this is the original not-twisted construction and therefore
better align our notation with [AFMOb], which is a crucial source for the AWS projects.
We will later twist the representation κnt to obtain a twisted version that we will then call
κ, see Section 3.10 and 4.6 for details. Similarly, ρ0 is in the literature on constructions of
supercuspidal representations usually simply denoted by ρ, however the symbol ρ will play
a different role in the construction of types below. Therefore we have chosen to add the
superscript “0” for the depth-zero representation ρ0 already here, which leads to a notation
that is consistent with the one used in Section 4.6 and with [AFMOb].

We will first sketch the construction of κnt in the case n = 1, i.e., when the supercuspidal
datum is of the form ((G = G1 ⊃ G2 = Gn+1), x, (r1), ρ

0, (ϕ1)). To simplify notation, we

write r = r1 and ϕ = ϕ1, and we assume G1 ̸= G2. In this case K̃ = (G1)x, r
2
(G2)[x].

Step 1 (extending the character ϕ as far as possible): The first step consists of
extending the character ϕ to a character ϕ̂ of (G1)x, r

2
+(G2)[x]. This is done as in Section

3.6 by sending the root groups outside G2 to 1. More precisely, ϕ̂ is the unique character of
(G1)x, r

2
+(G2)[x] that satisfies

� ϕ̂|(G2)[x] = ϕ, and

� ϕ̂|(G1)x, r2+
factors through

(G1)x, r
2
+/(G1)x,r+ ≃ gx, r

2
+/gx,r+ = (g2(F )⊕ r(F ))x, r

2
+/(g2(F )⊕ r(F ))x,r+

→ (g2)x, r
2
+/(g2)x,r+ ≃ (G2)x, r

2
+/(G2)x,r+,

on which it is induced by ϕ|(G2)x, r2+
, where we use the Moy–Prasad isomorphism, r(F )

is defined to be
r(F ) = g(F ) ∩

⊕
α∈Φ(GE ,TE)∖Φ((G2)E ,TE)

g(E)α

for some maximal torus T of G2 that splits over a tamely ramified extension E of F

with x ∈ Ã (TE, E), and the surjection g2(F )⊕ r(F ) ↠ g2(F ) sends r(F ) to zero.
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Step 2 (Heisenberg representation): As second step we extend the (one-dimensional)
representation ϕ̂|(G1)x, r2+(G2)x, r2

to a representation (ω, Vω) of (G1)x, r
2
. We write V r

2
for the

quotient
V r

2
= (G1)x, r

2
/((G1)x, r

2
+(G2)x, r

2
)

and we view V r
2
as an Fp-vector space. (It can also be viewed as an Fq-vector space, but

here we only consider the underlying Fp-vector space structure.) Then one can show that
the pairing

⟨g, h⟩ := ϕ̂(ghg−1h−1), g, h ∈ (G1)x, r
2

defines a non-degenerate symplectic form on V r
2
= (G1)x, r

2
/((G1)x, r

2
+(G2)x, r

2
) when we choose

an identification between the p-th roots of unity in C× and Fp.

Now the theory of Heisenberg representations implies that there exists a unique irreducible
representation (ω, Vω) of (G1)x, r

2
that restricted to (G1)x, r

2
+(G2)x, r

2
acts via ϕ̂ (times identity),

and the dimension of Vω is
√
#V r

2
= p

(dimFp V r
2
)/2

.

Step 3 (Weil representation): The final step of the construction consists of extending the

action of (G1)x, r
2
on Vω via ω to an action of K̃ = (G1)x, r

2
(G2)[x] on Vω by defining an action

of (G2)[x] on Vω that is compatible with ω. In order to obtain this action, we first observe
that (G2)[x] acts on V r

2
via conjugation and that this action preserves the symplectic form

⟨·, ·⟩. This provides a morphism from (G2)[x] to the group Sp(V r
2
) of symplectic isomorphisms

of V r
2
. Now the Weil representation is a representation of the symplectic group Sp(V r

2
) on the

space Vω of the Heisenberg representation of the symplectic vector space that is compatible
with the Heisenberg representation in the following sense. Using the composition of the
morphism (G2)[x] → Sp(V r

2
) with the Weil representation tensored with the character ϕ

allows us to extend the representation (ω, Vω) from (G1)x, r
2
to (G1)x, r

2
(G2)[x]. We denote the

resulting representation of K̃ = (G1)x, r
2
(G2)[x] also by (ω, Vω) and set (κnt, V nt

κ ) = (ω, Vω).

This concludes the construction of κnt and hence ρ̃ = ρ0⊗κnt in the case of n = 1. For a more
general supercuspidal datum ((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ

0, (ϕi)1≤i≤n) with n > 1 we construct
from each character ϕi (1 ≤ i ≤ n) a representation (ωi, Vωi

) analogous to the construction
of (ω, Vω) above. Then we define κnt to be the tensor product of all those representations,
i.e.

(κnt, V nt
κ ) =

(⊗
1≤i≤n

ωi,
⊗
1≤i≤n

Vωi

)
.

For the details we refer the reader to [Fin21a, §2.5], which is based on [Yu01].

Theorem 3.8.2 ([Yu01,Fin21a]). The representation c-ind
G(F )

K̃
ρ̃ is a supercuspidal smooth

irreducible representation of G(F ).

We will sketch the structure of the proof in the next subsection.
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3.9 Sketch of the proof that the representations are supercuspidal

In order to prove that c-ind
G(F )

K̃
ρ̃ is supercuspidal it suffices to prove that it is irreducible

by Lemma 3.2.1. First one notes that ρ̃ itself is irreducible. We assume that an element
g ∈ G(F ) intertwines ρ̃. Now the main task is to show that g ∈ K̃ so that we can apply
Lemma 3.2.3. This is done in two steps.

Step 1. We show recursively that g ∈ K̃Gn+1K̃ using that the characters ϕi are generic.

The key part for this step is [Yu01, Theorem 9.4], which in the example of n = 1 spelled out
above implies the following lemma.

Lemma 3.9.1 ([Yu01]). Suppose that g intertwines ϕ̂|(G1)x, r2+
. Then g ∈ (G1)x, r

2
G2(F )(G1)x, r

2
.

As mentioned above, this lemma crucially uses the fact that ϕ is (G,G2)-generic relative to
x of depth r (if G1 ̸= G2) and we refer to [Yu01, Theorem 9.4] for the proof.

Step 2. By Step 1 we may assume that g ∈ Gn+1(F ). Step 2 consists of showing that then
g ∈ (Gn+1)[x] using the structure of the Heisenberg–Weil representation and that ρ0|(Gn+1)x,0

is cuspidal. The spirit of this step is similar to the proof of Theorem 3.3.1, but in this more
general setting it additionally requires an intricate study of the involved Heisenberg–Weil
representations.

The reader interested in the full details of the proof is encouraged to read [Fin21a, §3],
which is only about four pages long and refers to precise statements in [Yu01] that allow an
easy backtracking within [Yu01] if the reader is interested in all the details that make the
complete proof.

3.10 A twist of Yu’s construction

Let ((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ
0, (ϕi)1≤i≤n) be a supercuspidal datum. Instead of associating

to this supercuspidal datum the representation c-ind
G(F )

K̃
ρ̃ constructed by Yu, a new sug-

gestion by Fintzen, Kaletha and Spice ([FKS23]) consists of associating the representation

c-ind
G(F )

K̃
(ϵρ̃) for an explicitly constructed character ϵ : K̃ → {±1}. We refer the reader to

[FKS23, p. 2259] for the definition of ϵ as it is rather involved. There are multiple reasons for
the introduction of this quadratic twist in the parametrization. For example, it restores the
validity of Yu’s original proof ([Yu01]) that c-ind

G(F )

K̃
(ϵρ̃) is a supercuspidal irreducible repre-

sentation, which is not valid for the non-twisted version as it relied on a misprinted statement
in [Gér77]. In particular, we restore the validity of the intertwining results [Yu01, Proposi-
tion 14.1 and Theorem 14.2] for the twisted construction that form the heart of Yu’s proof.
Instead of stating the results in full generality, which would involve introducing additional
notation, we state its implication in the setting that we already introduced above.

Proposition 3.10.1 ([Yu01,FKS23]). Let ((G = G1 ⊋ G2 = Gn+1), x, (r1 = r), ρ0, (ϕ1 = ϕ))

be a supercuspidal datum from which we construct a representation κnt of K̃ = (G1)x, r
2
(G2)[x]

as in Section 3.8. Set κ = ϵκnt. Then for g ∈ G2(F ), we have

dimC HomK̃∩gK̃g−1(κ,
g(κ)) = 1.
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This result also holds in a more general setting in which we drop the assumption that
Z(G2)/Z(G) is anisotropic. We refer the reader to [FKS23, Corollary 4.1.11 and Corol-
lary 4.1.12] for the detailed statements and proofs.

Applications of the existence of the above quadratic character ϵ : K̃ → {±1} include being
able (under some assumptions on F ) to provide a character formula for the supercuspidal

representations c-ind
G(F )

K̃
(ϵρ̃) ([Spi18, Spi, FKS23]), to suggest a local Langlands correspon-

dence for all supercuspidal Langlands parameters ([Kal]) and to prove the stability and many
instances of the endoscopic character identities for the resulting supercuspidal L-packets that
such a local Langlands correspondence is predicted to satisfy ([FKS23]).

3.11 Exhaustiveness of the construction of supercuspidal representations

Theorem 3.11.1 ([Kim07,Fin21d]). Suppose that G splits over a tamely ramified field ex-
tension of F and that p does not divide the order of the absolute Weyl group of G. Then
every supercuspidal smooth irreducible representation of G(F ) arises from Yu’s construction,
i.e., via Theorem 3.8.2.

This result was shown by Kim ([Kim07]) in 2007 under the additional assumptions that F
has characteristic zero and that p is “very large”. Her approach was very different from
the recent approach in [Fin21d]. Kim proves statements about a measure one subset of all
smooth irreducible representations of G(F ) by matching summands of the Plancherel formula
for the group and the Lie algebra, while the recent approach in [Fin21d] is more explicit and
can be used to recursively exhibit a supercuspidal datum for the construction of the given
representation. The latter approach consists of two main steps. The first step is to prove
that every supercuspidal smooth irreducible representation of G(F ) contains a (maximal)
datum as defined in [Fin21d], which can be viewed as a skeleton of a supercuspidal datum.
The second step consists of obtaining a supercuspidal datum from that maximal datum and
showing that the representation we started with is isomorphic to the one constructed from
this supercuspidal datum. We refer the reader to [Fin21d] for the details and to Section 5
of [Fin23] for an expanded overview.

4 Bernstein blocks, types and Hecke algebras

We have seen (Fact 1.2.8) that every irreducible representation embeds into the parabolic
induction of a supercuspidal representation of a Levi subgroup of G. Thus the supercuspidal
representations form the buildings blocks, and the previous section was concerned with
constructing those building blocks. In this section we want to now understand the whole
category of all smooth representations of G(F ).

4.1 Bernstein decomposition

Let (π, V ) be an irreducible smooth representation of G(F ). By Fact 1.2.8 there exists
a parabolic subgroup P ⊆ G with Levi subgroup M and a supercuspidal representation
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(σ,W ) of M(F ) such that π ⊆ Ind
G(F )
P (F ) σ. If P

′ ⊆ G is another parabolic subgroup with Levi

subgroupM ′ and a supercuspidal representation (σ′,W ′) ofM ′(F ) such that π ⊆ Ind
G′(F )
P ′(F ) σ

′,

then it turns out that there exists g ∈ G(F ) such that M ′ = gMg−1 and σ′ ≃ gσ. We call
the G(F )-conjugacy class of the pair (M, (σ,W )) the supercuspidal support of (π, V ).

In order to decompose the category of all smooth representations we need to define a weaker
equivalence class on the pairs consisting of Levi subgroups and supercuspidal representations.

Definition 4.1.1. A smooth character χ : G(F ) → C∗ is called an unramified character if
the restriction of χ to any compact subgroup of G(F ) is trivial.

Definition 4.1.2. Let M and M ′ be Levi subgroups of (parabolic subgroups of) G and
let σ and σ′ be supercuspidal representations of M(F ) and M ′(F ), respectively. We say
that (M,σ) and (M ′, σ′) are inertially equivalent if and only if there exist g ∈ G(F ) and an
unramified character χ of M ′(F ) such that M ′ = gMg−1 and σ′ ≃ gσ ⊗ χ.

We denote the inertial equivalence by ∼, write [M,σ]G for the inertial equivalence class of
the pair (M,σ), and denote by I(G) the set of inertial equivalence classes G, i.e., I(G) =
{[M,σ]G} whereM runs over the Levi subgroups of G and σ is a supercuspidal representation
of M(F ). We might simply write [M,σ] instead of [M,σ]G if the group G is clear from the
context.

Let [M,σ] ∈ I(G). Then we denote by Rep(G)[M,σ] the full subcategory of the category of
smooth representations Rep(G) of G(F ) whose objects are the following: A smooth represen-
tation π of G(F ) is contained in Rep(G)[M,σ] if and only if for every irreducible subquotient
π′ of π, there exists a parabolic subgroup P ′ with Levi subgroup M ′ and a supercuspidal

representation σ′ of M ′(F ) with (M ′, σ′) ∈ [M,σ] such that π′ ↪→ Ind
G′(F )
P ′(F ) σ

′.

Theorem 4.1.3 ([Ber84]). We have an equivalence of categories

Rep(G) ≃
∏

[M,σ]∈I(G)

Rep(G)[M,σ],

and each full subcategory Rep(G)[M,σ] is indecomposable.

The above equivalence of categories is called the Bernstein decomposition and the full sub-
category Rep(G)[M,σ] is called a Bernstein block .

4.2 Types and covers

The structure of the Bernstein blocks can be analyzed via type theory that was introduced
by Bushnell and Kutzko ([BK98]).

Definition 4.2.1. Let [M,σ] ∈ I(G). A pair (K, ρ) consisting of a compact, open subgroup
K of G(F ) and an irreducible smooth representation ρ of K is an [M,σ]-type if the following
property holds: For every irreducible smooth representation π of G(F ) the following are
equivalent:
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(i) π is an object in Rep(G)[M,σ],

(ii) ρ is a subrepresentation of the restriction π|K of π to K (i.e., HomK(ρ, π) ̸= {0}).

The notion of [M,σ]-types for M = G is closely related to the construction of supercuspidal
representations, as the following result shows.

Fact 4.2.2 ([BK98, (5.4)]). Let K̃ be a compact-mod-center, open subgroup of G(F ), and let

(ρ̃, Vρ̃) be an irreducible smooth representation of K̃ such that π := c-ind
G(F )

K̃
ρ̃ is irreducible,

hence supercuspidal. Let K be the (unique) maximal compact subgroup of K̃, and let ρ be an
irreducible component of the restriction of ρ̃ to K. Then (K, ρ) is a [G, π]-type.

Thus our construction of supercuspidal representations above leads to a plethora of examples
of types. This construction can also be generalized to obtain types for other Bernstein blocks
using the theory of covers as follows.

Definition 4.2.3. Let M be a Levi subgroup of G, let K be a compact, open subgroup of
G(F ), and let KM be a compact, open subgroup of M(F ). Let (ρ, Vρ) and (ρM , VρM ) be
irreducible smooth representations of K and of KM , respectively.
The pair (K, ρ) is a G-cover of (KM , ρM) if for every parabolic subgroup P ⊂ G with Levi
decomposition P =MN the following properties hold.

(i) K = (K ∩ N) · (K ∩M) · (K ∩ N) and K ∩M = KM where P = MN denotes the
opposite parabolic subgroup of G with respect to M (i.e., P ∩ P =M).

(ii) ρ|KM
= ρM and ρ|K∩N = 1Vρ and ρ|K∩N = 1Vρ .

(iii) For every irreducible smooth representation (π, V ) of G(F ), the restriction of the sur-
jection V ↠ VN := V/ ⟨v − π(n)(v) |n ∈ N(F )⟩ to the subspace V (K,ρ) is injective,
where V (K,ρ) denotes the largest subspace of V on which the restriction of π to K is
isomorphic to a direct sum of copies of ρ.

Fact 4.2.4 ([BK98]). Let (KM , ρM) be an [M,σ]M -type in M , and let (K, ρ) be a G-cover
of (KM , ρM). Then (K, ρ) is an [M,σ]G-type in G.

Using this theorem and results of [MP94,MP96], one can check that if G is a split reductive
group with split maximal torus T and Iw = Gx,0 ⊂ G(F ) for x contained in a maximal
facet of the apartment of T , then (Iw, triv) is a type for Rep(G)[T,triv], where triv denotes
the one-dimensional trivial representation. The group Iw is called an Iwahori subgroup, and
the corresponding Bernstein block Rep(G)[T,triv] is called the principal block . The principal
block contains the trivial representation of G(F ).
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4.3 Hecke algebras

A reason for the importance of types is that it leads to explicit modules, called Hecke algebras,
such that the Bernstein blocks are equivalent to modules over these algebras, see Theorem
4.3.3. To introduce Hecke algebras, let K be a compact, open subgroup of G(F ), and let
(ρ,W ) be an irreducible smooth representation of K.

Definition 4.3.1. The Hecke algebra H(G,K, ρ) is

the C-vector space of functions f : G(F ) → EndC(W ) satisfying

(a) f(k1gk2) = ρ(k1)f(g)ρ(k2) for all k1, k2 ∈ K, g ∈ G(F ), and

(b) the support of f is compact

together with the multiplication given by the convolution defined by

(f1 ∗ f2)(g) =
∑

x∈G(F )/K

f1(x)f2(x
−1g)

for all f1, f2 ∈ H(G,K, ρ) and g ∈ G(F ).

Here EndC(W ) denotes the C-linear endomorphisms of the C-vector space W , i.e., the en-
domorphisms are not required to preserve the action of K. Note that∑

x∈G(F )/K

f1(x)f2(x
−1g) =

∫
G(F )

f1(x)f2(x
−1g)dx

if we choose the measure dx to be the Haar measure that satisfies
∫
K
1dx = 1.

Exercise 4.3.2. Show that H(G,K, ρ) ≃ EndG(F )

(
c-ind

G(F )
K ρ

)
where the product structure

on the latter is given by composition.

Theorem 4.3.3 ([BK98]). If (K, ρ) is an [M,σ]-type, then the Bernstein block Rep(G)[M,σ]

is equivalent to the category of right unital H(G,K, ρ)-modules, i.e.,

Rep(G)[M,σ] ≃ Mod−H(G,K, ρ).

The equivalence in the above theorem is given by sending (π, V ) ∈ Rep(G)[M,σ] to the

nontrivial vector space HomK(W,V ). The action of H(G,K, ρ) ≃ EndG(F )

(
c-ind

G(F )
K ρ

)
on

this space is given by using Frobenius reciprocity to identify

HomK(W,V ) ≃ HomG(F )

(
c-ind

G(F )
K W,V

)
,

and EndG(F )

(
c-ind

G(F )
K ρ

)
acts on the right hand side via precomposition.

Of course this result is only of use if we
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(a) know that types exist for the Bernstein blocks that we want to study, and

(b) understand the structure of the resulting Hecke algebras.

The first concern will be answered in Sections 4.5 and 4.6, and the second question will be
discussed in Sections 4.4 and 4.7 below.

Before given an explicit example of such Hecke algebras, let us mention one a first fundamen-
tal observation about those Hecke algebera: Their support. By the support of H(G,K, ρ),
denoted by Supp

(
H(G,K, ρ)

)
, we refer to all those g ∈ G(F ) such that there exists an

element f ∈ H(G,K, ρ) with f(g) ̸= 0. The support is tightly linked with the notion of
intertwining, see Notation 3.2.2, as the following exercise shows.

Exercise 4.3.4. Supp
(
H(G,K, ρ)

)
= {g ∈ G(F ) | g intertwines (K, ρ)}

4.4 The Iwahori–Hecke algebra

to be written

4.5 Depth-zero types

In order to use the theory of types to study Bernstein blocks, we need to know that types
exist, and ideally we like to have an explicit construction for them. We start by treating the
special case of Bernstein blocks that consist of depth-zero representations, generalizing the
construction of depth-zero supercuspidal representations.

Let x ∈ B̃(G,F ). Then Moy and Prasad ([MP96, §6.3]) construct a Levi subgroup M ⊆
G with the properties that x ∈ B̃(M,F ) ⊆ B̃(G,F ), that x is contained in a facet of

minimal dimension of B̃(M,F ), and that the inclusionMx,0 ↪→ Gx,0 induces an isomorphism

Mx,0/Mx,0+
≃−→ Gx,0/Gx,0+. Hence we also have

(Gx,0 ·Mx)/Gx,0+ ≃Mx/Mx,0+.

Proposition 4.5.1 ([MP96]). Let ρ0 be an irreducible representation of Gx,0Mx that is
trivial on Gx,0+ and such that ρ0|Gx,0 is a cuspidal representation of the reductive group
Gx,0/Gx,0+ ≃Mx,0/Mx,0+. Then the pair (Gx,0Mx, ρ

0) is a G-cover of (Mx, ρ
0|Mx).

Proof. This follows from [MP96, Prop 6.7], see also [KY17, 3.3 Prop].

In the setting of the previous proposition, let ρ̃0 be an irreducible representation of M[x]

that is trivial on Mx,0+ and whose restriction to Mx contains the restriction ρ0|Mx of ρ0.

Then, by Theorem 3.3.1 and Remark 3.3.2, the representation c-ind
M(F )
M[x]

ρ̃0 is a supercuspidal

irreducible representation, and by Fact 4.2.2 the pair (Mx, ρ
0|Mx) is an [M, c-ind

M(F )
M[x]

ρ̃0]M -

type. Combining this observation with Proposition 4.5.1 and Fact 4.2.4, we obtain the
following corollary.
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Corollary 4.5.2. The pair (Gx,0Mx, ρ
0) is an

[
M, c-ind

M(F )
M[x]

ρ̃0
]
G
-type.

Note that all irreducible representations in Rep(G)[
M,c-ind

M(F )
M[x]

ρ̃0
] have depth zero, so we

may refer to such a Bernstein block also as a depth-zero Bernstein block, and to the pair
(Gx,0Mx, ρ

0) as a depth-zero type.

4.6 Types constructed by Kim and Yu – with a twist

Based on the construction of depth-zero types, we will now construct types for Bernstein
blocks consisting of representations of positive depth, based on the work of Kim and Yu
([KY17]), but twisted by a quadratic character arising from the work of Fintzen, Kaletha
and Spice ([FKS23]).

The construction of types by Kim and Yu takes as an input a datum very similar to
the supercuspidal datum introduced in Section 3.7 except that we weaken some of the
assumptions. In order to do so, we first explain how to construct from a a sequence
G1 = G1 ⊇ G2 ⊇ . . . ⊇ Gn+1 of twisted Levi subgroups of G with Gn+1 split over

a tamely ramified extension and a point x in the building of B̃(Gn+1, F ) ⊂ B̃(G,F ) a
Levi subgroup Mi for each Gi (1 ≤ i ≤ n + 1). We let Mn+1 ⊆ Gn+1 be the Levi sub-
group as introduced by Moy and Prasad in [MP96, §6.3], see Section 4.5, that satisfies that

(Mn+1)x,0/(Mn+1)x,0+
≃−→ (Gn+1)x,0/(Gn+1)x,0+ and that x is a facet of minimal dimension in

B̃(Mn+1, F ). We let Zsplit(Mn+1) be the maximal split torus in the center of Mn+1 and let
Mi := CentGi

(Zsplit(Mn+1)) be its centralizer in Gi. We also write M :=M1.

Now we can modify the input for the construction of supercuspidal representations to an
input for the construction of types as follows. Let ((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ

0, (ϕi)1≤i≤n) for
some non-negative integer n be the following data

(a) G = G1 ⊇ G2 ⊋ G3 ⊋ . . . ⊋ Gn ⊋ Gn+1 are twisted Levi subgroups of G that split over
a tamely ramified extension of F ,

(b) x ∈ B̃(Mn+1, F ) ⊂ B̃(Gn+1, F ) ⊂ B̃(G,F ),

(c) rn−1 > r2 > . . . > rn > 0 are real numbers,

(d) ϕi, for 1 ≤ i ≤ n, is a character of Gi+1(F ) of depth ri,

(e) ρ0 is an irreducible representation of (Gn+1)x,0 · (Mn+1)x that is trivial on (Gn+1)x,0+,

satisfying the following conditions

(i) (no condition on Z(Gn+1)/Z(G))

(ii) the point x is chosen so that (Mi)x,ri/2/(Mi)x,ri/2+
≃−→ (Gi)x,ri/2/(Gi)x,ri/2+ for 1 ≤ i ≤ n,

where Mi is defined as above,
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(iii) ϕi is (Gi, Gi+1)-generic (relative to x) of depth ri for all 1 ≤ i ≤ n,

(iv) ρ0|(Gn+1)x,0 is a cuspidal representation of the reductive group (Gn+1)x,0/(Gn+1)x,0+ ≃
(Mn+1)x,0/(Mn+1)x,0+.

We will call a tuple satisfying the above conditions a G-datum. We also set

G0 := Gn+1, M0 :=Mn+1, and K0 := G0
x,0 ·M0

x .

Then by the previous subsection, Section 4.5, the pair (K0, ρ0) is an [M0, σ0]G-type for some
depth-zero supercuspidal representation σ0 of M0(F ).

Note that in these lecture notes we assume by definition that K0 = G0
x,0 ·M0

x while [AFMOb]
allows for a more general choice for K0 that is recorded as part of the G-datum in [AFMOb,
Definition 4.1.1 and (4.1.2)].

Remark 4.6.1. We use the same conventions here as in Section 3.7 to allow for an easier
comparison. The reference [AFMOb] uses the convention of Yu ([Yu01]) and Kim and Yu
([KY17]). Here is how to obtain our notation used here from the one used in [AFMOb]:

(Gn+1, Gn, . . . , G2, G1 = G) =

{
(G0, G1, . . . , Gd = G) if rd−1 = rd
(G0, G1, . . . , Gd, Gd = G) if rd−1 ̸= rd

(rn, rn−1, . . . , r2, r1) =

{
(r0, r1, . . . , rd−1) if rd−1 = rd
(r0, r1, . . . , rd−1, rd) if rd−1 ̸= rd

(ϕn, ϕn−1, . . . , ϕ2, ϕ1) =

{
(ϕ0, ϕ1, . . . , ϕd−1) if rd−1 = rd
(ϕ0, ϕ1, . . . , ϕd−1, ϕd) if rd−1 ̸= rd ,

where the condition rd−1 = rd or rd−1 ̸= rd refers to the rational numbers rd−1 and rd in
[AFMOb] and we write r−1 = 0.

While a case distinction is necessary to translate between the two conventions, the conven-
tion used here has the advantage that we need to make less case distinctions in the actual
definition of a G-datum (c.f., [AFMOb, Definition 4.1.1 D5]). Moreover, we also do not
need a case distinction when extracting the Heisenberg–Weil datum from a G-datum that is
used to construct types, see [AFMOb, Remark 4.1.4] and the formulas preceding it. Using
our convention, the Heisenberg–Weill datum attached to a G-datum is simply the G-datum
without ρ0.

For constructions of types rather than obtaining an exhaustion result, where our convention
of notation was introduced ([Fin21d]), replacing all our indices i by n + 1 − i might be
desirable, but we were worried that introducing yet a third convention would cause more
confusion than benefits. However, we do use the notation G0 = Gn+1 for the group that will
play an important role in the reduction to depth-zero results in Section 4.7.

Let ((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ
0, (ϕi)1≤i≤n) be a G-datum. To this G-datum we attach the

pair (K, ρ) with

K = (G1)x, r1
2
(G2)x, r2

2
. . . (Gn)x, rn

2
·K0 and ρ = ρ0 ⊗ κnt ⊗ ϵ = ρ0 ⊗ κ,
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where ρ0 also denotes the extension of ρ0 to K that is trivial on (G1)x, r1
2
(G2)x, r2

2
. . . (Gn)x, rn

2
,

the representation κnt is constructed from the characters ϕ1, . . . , ϕn via the theory of Heisenberg–
Weil representations analogous to the construction in Section 3.8, the representation ϵ is a
quadratic character arising from [FKS23], see also Section 3.10, and κ := ϵκnt. See [AF-
MOb, §4.1] for more details on the construction of κ.

Theorem 4.6.2 ([KY17] (and [Fin21a] or [FKS23])). The pair (K, ρ) is an [M,σ]-type (for
some supercuspidal representation σ of M(F )).

The theorem is proven using the theory of covers discussed in Section 4.2. Under minor
tameness assumptions this construction provides us with types for every Bernstein block.
More precisely, we have the following result.

Theorem 4.6.3 ([KY17,Fin21d]). Suppose that G splits over a tamely ramified field exten-
sion of F and that p does not divide the order of the absolute Weyl group of G. Then for
every [M,σ] ∈ I(G), there exists a G-datum whose associated pair (K, ρ) by the construction
above is an [M,σ]-type.

This theorem is proven in the same way as Theorem 3.11.1, the result that under the same
assumptions all supercuspidal representations arise from Yu’s construction. In fact, Theorem
3.11.1 is proven by first proving Theorem 4.6.3.

4.7 Structure of Hecke algebras

From now on let ((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ
0, (ϕi)1≤i≤n) be a G-datum and let (K, ρ) be

the corresponding [M,σ]-type from Section 4.6. Recall that we write G0 = Gn+1 and
that (K0, ρ0) is an [M0, σ0]G-type. In this section we will discuss an isomorphism between
H(G,K, ρ) and H(G,K0, ρ0) and use it to describe the structure of H(G,K, ρ), following
[AFMOa,AFMOb].

In order to understand the Hecke algebras, we first introduce some more notation in line
with [AFMOb]. We set

KM0 := K ∩M0(F ) = K0 ∩M0(F ),

ρM0 := ρ0|KM0 ,

N(ρM0)[x]M0 := {n ∈ G0(F ) |nM0n−1 =M0, nK0
Mn

−1 = K0
M ,

nρM0 ≃ ρM0}.

Our isomorphism between the two Hecke algebras H(G,K, ρ) and H(G,K0, ρ0) will be con-
structed in a support-preserving way. To make sense of such a statement, we first observe
the following structure of their supports.

Fact 4.7.1. We have Supp
(
H(G,K, ρ)

)
= K ·Supp

(
H(G0, K0, ρ0)

)
·K ⊂ K ·N(ρM0)[x]M0 ·K.

Fact 4.7.2. Let g ∈ Supp(H(G,K, ρ)). The C-subspace of functions in H(G,K, ρ)) that are
supported on Kg has dimension one.
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While the support is a priori only a set of double cosets, the next result allows us to endow
it with a group structure.

Proposition 4.7.3 ([AFMOb]). There exists a subgroup N♡ of N(ρM0)[x]M0 that is contained
in the support of H(G,K, ρ) such that the inclusion map induces a bijection

N♡/(N♡ ∩M0
x)

≃−→ K\ Supp
(
H(G,K, ρ)

)
/K.

Since the intersection (N♡ ∩M0
x) is a normal subgroup of N♡, the quotient N♡/(N♡ ∩M0

x)
is a group, which we denote by W♡. This equips the support of our Hecke algebras with a
group structure and allows us to describe the Hecke algebra structure as follows.

Theorem 4.7.4 ([AFMOb]). The group W♡ admits the structure of a semi-direct product
W♡ ≃ Ω(ρM0)⋉W (ρM0)aff where W (ρM0)aff is an affine Weyl group and such that

H(G,K, ρ) ≃ C[Ω(ρM0), µ]⋉Haff(W (ρM0)aff , qs)

for some 2-cocycle µ : Ω(ρM0) × Ω(ρM0) → C and some qs ∈ Q>1 with the index s running
through a set of simple reflection of the affine Weyl group W (ρM0)aff . Here C[Ω(ρM0), µ]
denotes the twisted group algebra, i.e., C[Ω(ρM0), µ] ≃

⊕
t∈Ω(ρM0 )

Cbt as a vector space with

multiplication given by bt1bt2 = µ(t1, t2)bt1t2.

[[section to be expanded and more explanation added, need to define Haff(W (ρM0)aff , qs)]]

Theorem 4.7.5 ([AFMOb]). There exists a representation κ̃ : N♡ · (K ∩M(F )) → End(Vκ)
such that κ̃|K∩M(F ) = κ|K∩M(F ) and such that there exists an algebra-isomorphism

I : H(G0, K0, ρ0)
≃−→ H(G,K, ρ)

defined by the following:

If φ ∈ H(G0, K0, ρ0) is supported on K0nK0 with n ∈ N♡, then I(φ) is supported on KnK
and

I(φ)(n) = dn · φ(n)⊗ κ̃(n) with dn =

√
|K0/(nK0n−1 ∩K0)|
|K/(nKn−1 ∩K)|

.
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∗ , 32

A (T, F ), 9

B(G,F ), 9

B̃(G,F ), 14

c-ind, 4

F , 3
F̄ , 6
Fq, 3

G0, 35
G(F )x,r, 8, 12
g(F )x,r, 8, 12
g∗(F )x,r, 8
(Gn+1)[x], 26
Gx,r, 8
gx,r, 8, 12
g∗x,r, 8
Gx,r+, 9
gx,r+, 9

H(G,K, ρ), 32

Ind, 4
Iw, 31

K0, 35
κnt, 26
K̃, 26

M0, 35
Mi, 34
[M,σ]G, 30

O, 6
OE, 6
OF̄ , 6

φ, 19
Φ(G, T ), 20
ϕ̂, 22, 26

Rep(G), 30
Rep(G)[M,σ], 30
ρ̃, 26

Uα(F )x,r, 7

val, 6, 20

W♡, 37

[x], 14
X∗(T ), 7
X∗(T ), 7
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apartment, 10, 13

Bernstein block, 30
Bernstein decomposition, 30
Bruhat–Tits building, 9
BT triple, 6
building, 11

chamber, 10
Chevalley system, 6
compactly induced representation, 4
convolution, 32
cuspidal representation, 5

depth, 15

enlarged Bruhat–Tits building, 14

G-datum, 35
generic character, 21
G-generic, 21
(G,G′)-generic, 21

Hecke algebra, 32

induced representation, 4
intertwine, 17
irreducible smooth representation, 3
Iwaori subgroup, 31

Mackey decomposition, 17
[M,σ]-type, 30

parabolic induction, 4
parahoric subgroup, 9
principal block, 31

smooth induction, 4
smooth representation, 3
supercuspidal datum, 25
supercuspidal representation, 5
supercuspidal support, 30

twisted Levi subgroup, 20
type, 30
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