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ABSTRACT. Recently the authors have shown that every Hecke algebra associ-
ated to a type constructed by Kim and Yu is isomorphic to a Hecke algebra for
a depth-zero type. An example in the literature has been suggested as a coun-
terexample to this result. We show that the example is not a counterexample,
and exhibit some of its interesting properties, e.g., we show that a principal
series, depth-zero type can have a Hecke algebra with non-trivial two-cocyle,
a phenomenon that many did not expect could occur.

1. INTRODUCTION

Let G denote a connected reductive group over a non-archimedean local field F.
The category Rep(G(F')) of smooth, complex representations of G(F') is a direct
product of full subcategories called “Bernstein blocks”:

Rep(G(F)) = [] Rep®(G(F)).

s€J(G)

Each of the blocks Rep®(G(F)) is equivalent to the category of unital right modules
over an algebra H*. Suppose that the category Rep®(G(F)) has an associated type,
as defined by Bushnell and Kutzko [BK98], i.e., a compact open subgroup K of G(F')
and an irreducible smooth representation p of K such that a representation 7w €
Rep(G(F)) belongs to Rep®(G(F)) if and only if every irreducible subquotient of 7
contains p upon restriction to K. Then we can replace the algebra H® by the Hecke
algebra H(G(F), (K, p)) of all compactly supported, Endc(p)-valued functions on
G(F) that transform on the left and right according to p. That is, Rep®(G(F)) is
equivalent to the category of modules over H(G(F), (K, p)).

One of the present authors [Fin21] has shown that, provided that G splits over a
tamely ramified extension of F' and the residual characteristic p of F' is not too
small, the construction of Kim and Yu [KY17] provides types for every Bernstein
block for G(F'). Thus, under this mild tameness assumption, one can in principle
understand the category Rep(G(F')) by understanding the structures of all of the
Hecke algebras that arise from the types constructed by Kim and Yu.

In the “depth-zero” case, the compact group K contains a parahoric subgroup of
G(F), and the representation p is trivial on the pro-p radical of this parahoric. In
the special case where K is a parahoric subgroup, Morris [Mor93, Theorem 7.12]
has described the structures of these Hecke algebras. More generally, the authors
[AFMO24al, Theorem have described the structures of all depth-zero types.
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In the set-up of Kim and Yu ([KY17]), a type (K, p) for G of positive depth is
constructed from a depth-zero type (K, p°) for a subgroup G° of G, together
with some additional data. The authors have recently shown [AFMO24bl Theorem
that the associated Hecke algebras H(G(F), (K, p)) and H(G°(F), (K", p°))
are isomorphic, after twisting the construction by Kim and Yu by a quadratic
character arising from [FKS23|, thus describing the structures of all Hecke algebras
arising from Kim—Yu types.

In outline, from the pair (K, p), one constructs a group W%, and a normal, affine
reflection subgroup Wz of W<. Choosing a set S of generating reflections for
W, one constructs a parameter function ¢q: S — C*, thus obtaining an abstract
Hecke algebra H(Wag,q). The choice of S gives rise to a complement Q to Wg
in W¥. A choice of a family 7 of intertwining operators gives rise to a 2-cocycle
u”:Q x Q — C*. One then obtains an isomorphism of C-algebras

H(G(F), (K, p) = C[Q uT] x H(Was, q)-

That is, H(G(F), (K, p)) is isomorphic to a semidirect product of our abstract Hecke
algebra and the p7 -twisted group algebra of 2, where the structure of multiplication
between these two factors is controlled by the conjugation action of 2 on Wg.

In relation to the above discussion, Roche [Roc02) §4] and Goldberg—Roche [GRO5,
§11.8] each illustrate some unusual phenomena by presenting an example, that they
attribute to Kutzko, of a Hecke algebra H := H(G(F), (K, p)) for a particular block
of G = SLg. In this note, we discuss this example, determine an attached depth-zero
pair (K%, p°) and describe the depth-zero algebra H° := H(G°(F), (K°, p%)) that
corresponds to it via [AFMO24bl Theorem explicitly, as well as the closely
related Hecke algebra H%° := H(GO(F), (K%°,p°)), where we replace K° by the
parahoric subgroup K%° contained in it. We have several aims in doing so.

(a) First, a remark in [GRO5] that H cannot be isomorphic to any of the intertwin-
ing algebras constructed by Morris [Mor93] let several mathematicians believe
that H would provide a counterexample to [AFMO24b, Theorem . Thus,
we want to assure readers that this is not the case.

(b) Second, H° provides an example of a depth-zero Hecke algebra where the as-
sociated affine reflection group is trivial, the group Q(pas) is nonabelian and
infinite, and the cocycle 7 is non-trivial. In particular, #° is an example of
a Hecke algebra attached to a depth-zero, principal-series block of a quasi-split
group that requires a non-trivial 2-cocycle, something that was long believed
not to exist. We believe that this example might be useful for researchers in
the future.

Notation. For a connected reductive group G and a reductive subgroup M of G,
let Ng(M), resp., Zg(M), denote the normalizer, resp., centralizer, of M in G.

For a finite field extension E/F and A a linear algebraic group or a Lie algebra
thereof defined over I, we write Resg/p(A) for the Weil restriction of A to F.

For a linear algebraic group G, we denote by Lie(G) the Lie algebra of G and by
Lie*(G) the dual of Lie(G). We also write Lie*(G)“ for the subscheme of Lie*(G)
fixed by the coadjoint action of G on Lie*(G). For a morphism f: G — H of
algebraic groups, let

Lie(f): Lie(G) — Lie(H)
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denote the morphism between their Lie algebras induced by f.

Suppose that G is a connected reductive group defined over a non-archimedean
local field F. We denote by B(G, F') the enlarged Bruhat—Tits building of G. For
x € B(G, F), let G(F), denote the stabilizer of z in G(F). For r € R with r > 0, we
also let G(F)y,r, resp., G(F)y.r+, be the Moy—Prasad filtration subgroup of G(F')
of depth r, resp., 7+, associated to x (see [MP94), MP96]). We use the analogous
notation for the Lie algebra Lie(G) and its dual Lie*(G), where r is allowed to be
any element of R.

For a compact, open subgroup K of G(F') and an irreducible smooth representation
p of K, we denote by H(G(F'), (K, p)) the Hecke algebra attached to (K, p). We
refer to [AFMO24a, Section for the precise definition of H(G(F), (K, p)).

Suppose that K is a subgroup of a group H and h € H. We denote hiKh™! by "K.
If p is a representation of K, we write "p for the representation = ~ p(h~'xh) of
}LK.

2. THE EXAMPLE

In this section we introduce the example studied in this paper that we learned
about from Roche [Roc02), §4] and Goldberg—Roche |[GRO05, §11.8], who attribute
it to Kutzko. We present it, a type for the group SLg, in the language of Kim
and Yu’s construction of types. Doing so then allows us to describe the associated
depth-zero type for a smaller group G°, seeing directly that it fits into our set-up.

Let F' denote a non-archimedean local field with residue field § of characteristic p
(assumed odd) and order q. We fix a uniformizer wr of F and a square root /—1
of =1 in C*. For any finite field extension E/F, we denote by Of the ring of
integers in F, by pg the prime ideal in O, by Trg/p: E — F' the trace map, and
by Ng/p: E* — F the norm map. Let ord denote the discrete valuation on F'*
with the value group Z. For any finite extension E of F' , we also write ord for
the unique extension of this valuation to E*. We denote by ordy'™: E* — Z the
normalized valuation on E*.

Let ¢ be a primitive (¢ — 1)-st root of unity in F. Assume that 4 divides ¢ — 1. It
follows that there exists a unique character n: F* — C* that is trivial on wr and
1+ pr and satisfies 7(¢) = v/—1. Let Es be the splitting field of the polynomial
X? + wp, and Ey the splitting field of the polynomial X* + (wp. (Note that the
fields that we denote by Fs and Ej4 here are denoted by F; and FEs, respectively,
in [Roc02].) Let wg,, resp., wg,, denote a uniformizer of Es, resp., Ey, such that
w%z = —wp, resp., w4E4 = —(wp. We fix a generator o of the Galois group
Gal(E3/F) and a generator o4 of the Galois group Gal(Eys/F).

We define the following reductive groups over F:
G = G? = GLs,
G' = Resg, r(GLy) x GLy,
GO = Resg, /r(GL2) % Resg, /p(GL1),
T = M° = Resp, /p (GL; x GLy) x Resp, /r(GLy).
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We identify GL; x GL; with the diagonal torus of GLy by the map (¢, t2) — (% toz ),
thus obtaining an embedding M° < G°. Fix isomorphisms F®2? & E, and F®* =~
FE, of vector spaces over F', thus determining isomorphisms

F@s o ESBQ @ F®4 o E2€B2 @ E4.

These choices determine embeddings of F-groups GO — G' < G2. Let us identify
each group above with its images under these maps, so that they are all contained
within G = GLsg.

The maximal split subtorus Az of T is isomorphic to GL; x GL; x GL;. Note that
MO = ZéO(Af) For : = 1,2, let Mi = Z(N}’(AT)’ and write M = MQ.

Let G = SLg. For X € {G', M M,T|i =0,1,2}, we let X = X NG. We thus
obtain a twisted Levi sequence (G° C G!' C G? = SLg), and a Levi subgroup
M° ¢ G° We denote by ®(X,T) the absolute root system of X with respect

to the maximal torus T. For a € ®(X,T), we denote by " the corresponding
(absolute) coroot.

We let K° be the Iwahori subgroup of éO(F) given by KO = I, x I, where I
denotes the Iwahori subgroup of GLy(E>) = (Resp,/#(GL2)) (F) defined by

I = {(‘c’ Z) € GLy(Ey)

and I, denotes the Iwahori subgroup of (Resg,,r(GL1)) (F) = EJ, ie., I, = OF .

a,deng,beoEQ,cepEz},

We choose xg € B(M?, F) and fix a commutative diagram {¢}

B(GY, F) — B(G', F) — B(G%,F)

] o ] e ]

B(M°, F) —— B(M',F) — B(M?2,F)

of admissible embeddings of buildings that is (0, é, i)—generic relative to x¢ in the

sense of [KYIT, 3.5 Definition] such that G°(F),, = K° N GO(F). Here and from
now on, we identify a point in B(M?, F) with its images via the embeddings {¢}.
Then we have

GO(F) o0 = {(g2,94) € (T2 x 1)) N GO(F) | (det(g2) mod pg,) - (94 mod pp,)? =1},

where we regard (det(gs) mod pg,) and (g4 mod pg,) as elements of <. Let K°
be either GO(F),, or GO(F)y,.0. We also define K0 = KN MO(F) and Ko =
K° N MO(F). Thus, we have Kppo = OF, x OF x Oy and Ky = MO(F),, or
MO(F)y, 0 according as K° = GO(F),, or G°(F)4, 0. More precisely,
(2.1)
{(z,y,2) € Of x OF, x OF | Ng,/r(ay)Ng,/r(z) = 1}

if KO = GO(F),,,

N, r(2y) Np,jr(2) =1,
(v mod p,) - (= mod ps,)? = 1
if KO = GO(F)Q:O,O'

KMO - X X X
(z,y,2) € O, x O, x O,
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We observe that
(2.2) K= Ky - GY(F)yy0-
Since the embedding ¢: B(M°, F) — B(GY, F) is 0-generic relative to zg, the in-
clusion M%(F)y,.0 C G°(F)4,,0 induces an isomorphism
MO(F)ao,0/MO(F)ug 01 = GO(F)ug,0/ G (F)ag 0+
Combining this with (2.2)), we also have
(2.3) Ko /MO (F)zg04 — K°/G(F)zg,0+-

We define the character ppso of IN(Mo by pyo = 1K (no NEz/F) X 1, and write
pyvo = pumolk,,,. We define the character oY of K% as the composition of the
surjection K° — K9/G°(F)y, .04, the inverse of the isomorphism in and the
character pp0. More precisely, p° is the restriction to K° of the character 1, X1
of the group K 0. where 1, denotes the character of I, defined by

2 ((CCL Z)) = (no Ngy/r) (d).

Let £ = E5 or E4. We fix an additive character ¥: FF — C* that is trivial
on pr and non-trivial on Op. We define a character ¢g of 1 + pp by ¢op(1 +
z) = U(Trp/p(wp'a)) for @ € pp. We fix an extension of ¢ to EX and use
the same notation ¢p for it. We also define the character ¢, (g,) of GL2(E2) by

PGLo(E2)(9) = PE,(det(g)). We define the character o of G°(F) = GLy(Ey) x Ef
by ¢o = 1 X ¢p,, and define the character ¢y of G*(F) = GLy(E») x GL4(F) by
1 = Pary(B.) X 1. We write ¢ = ¢o|go(r) and ¢1 = d1|a1(p)-

Lemma 2.1. The character ¢q is (G, G%)-generic of depth i relative to the point

xo, and the character ¢y is (G*,G')-generic of depth % relative to the point xg in
the sense of [Finl, Definition 3.5.2].

Proof. By construction, ¢y is trivial on G° (F)z4,(1/4)+> and ¢ is trivial on Gt (F)z,(1/2)+-
We define X; € Lie*(G°)C°(F) and X7 € Lie*(G))% (F) as follows. Let E €
{F3, E4}. We use the same notation

Trg/r: Resg/r(Lie(GLy1)) — Lie(GL;1)
for the usual trace morphism whose map on F-valued points is the trace map. Let
m(wgl): Lie (ResE/F(GLl)) — Lie (ReSE/F(GLl))
denote the morphism induced by multiplication by wgl € F = Lie (Res B/ F(GLl)) (F).
We define )Z'S‘ € Lie"‘(éo)é0 (F) as the composition of the projection map
Lie(G°) — Lie (Resg, /r(GL1))

and
Trg,/F om(wgi): Lie (ResE4/F(GL1)) — Lie(GLy).

To define )?f , we let
ResE2/F(det) : RGSEQ/F(GLQ) — RGSEQ/F(GLl)
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be the morphism of algebraic groups induced by the usual determinant map det: GLg —

GL;. Now, we define X7 € Lie* (51)61 (F) as the composition of the projection map
Lie(G') — Lie (Resg,,r(GL2))
and
Trg,/r om(wgi) o Lie (Resg,,/r(det)) : Lie (Resg,,r(GL2)) — Lie(GLy).
We define X € Lie”(G?)%" (F) and X} € Lie*(G')' (F) as the restrictions of X;
and X7 to Lie(G°) and Lie(G'), respectively. Then the restriction of ¢ to
GO<F>zo,1/4/GO(F)xo,(1/4)+ = Lie(GO)(F)zo,1/4/Lie(G0>(F)xo,(1/4)+
is given by ¥ o X, and the restriction of ¢, to

Gl(F)zo,1/2/Gl(F)xo,(1/2)+ = Lie(Gl)(F)xo,1/2/Lie(Gl)(F)a:o,(l/2)+
is given by ¥ o X7.
We will prove that X¢ is (G1, GY)-generic of depth —1/4, and X7 is (G2, G1)-generic
of depth —1/2 in the sense of [Fin| Definition 3.5.2]. First, we will prove that X
satisfies (GEQ) and (GE1) in [Finl, Definition 3.5.2]. Let o € ®(G',T)\ ®(G°, T).
Then we have

Xg(Lie(a¥)(1)) = of(wp,) — o (g,
for some i, j € {0,1,2,3} with ¢ # j. Since E4 = F[wgi], we obtain from [May20]
Proposition 5.9] that

ord (ag(w,gj) - ai(ng)) — ord(wp!) = —1/4.
Thus, the element X satisfies (GE1) in [Fin, Definition 3.5.2]. Moreover, since
(0,wg,) € Lie(G®) 40174 (where we view wp, in Lie(Resg,,r(GL1))(F) by iden-
tifying the latter with E4 and note that (0,wg,) € Lie(G°)(F) as wg, has trace
zero) and
ord (X; (0,0, )) = ord(4) =0,
we have X ¢ Lie"(G°) ., (—1/2)+. Since it can be checked from the definition that
X5 € Lie*(G°) 4,—1/a, the element X also satisfies (GEO) in [Finl, Definition 3.5.2].
Next, we will prove that X satisfies (GEO) and (GE1) in [Fin| Definition 3.5.2].
Let a € ®(G?,T) ~ ®(G',T). Then, using that oo(wg,) = —wg,, we obtain
X{(Lie(a")(1)) € {+wp, , +2w5! }.
Hence
ord (X7 (Lie(a¥)(1))) = ord(wE;) =-1/2,

and X7 satisfies (GE1) in [Finl Definition 3.5.2]. Consider the element <(wE2 0)
Lie* (Gl >20,71/27 then

ord (Xf ((w(f? 8) ,0)) = ord(2) =0,

thus X7 ¢ Lie*(G')4,,—1/2+. Moreover, Xi € Lie*(G'),,,_1/2, hence X satisfies
(GEO) in [Fin| Definition 3.5.2].

Since the only possible torsion prime for the dual root datum of G! and G? is 2,
and since p # 2, by [Yu0ll Lemma 8.1] condition (GE2) is also satisfied. O

\.O
N———
m
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As a consequence of the above lemma, the datum
Y= ((GO C Gl - GQ’ MO)) (i) %7 %)? (.’IIQ, {[’})7 (KM07 PM°)7 (¢07 (bla 1))

satisfies the properties of [KY17, (7.2)], in other words, it is a G-datum as in
[AFMO24b| Definition 4.1.1]. Applying the construction of Kim and Yu in [KY17,
7.4] to X, we obtain a compact, open subgroup K of G(F') and an irreducible
smooth representation p of K.

Remark 2.2. In [AFMO24b], we twist the construction of Kim and Yu by a qua-
dratic character €5 of K°/G°(F)a,,04 ~ Kppo/MO(F)gq 04 introduced in [FKS23],
see [AFMO24bl, §4.1] for details. In our case, we can compute ez using [FKS23|
Definition 3.1, Theorem 3.4] as follows:
G;G; ((x, Yy, z) mod MO(F)10)0+) = sgnf(xy_l mod ppg,) = sgnf(xy mod pg,)
for (z,y,2) € Ko, where sgn; denotes the unique non-trivial quadratic character
of f* = Of, /(1 +pg,). Since —1 € (§°)?, the conditions in (2.1) imply that
ry mod pp, = £(z mod pg,) "2 € ()2
Thus, we obtain that eg is trivial, and the twisted and non-twisted constructions
agree in our case.
According to [AFMO24b|, Theorem 4.4.1], we have an isomorphism of C-algebras
H(GO(F), (G°(F)z ) — H(G(F), (K, p))-

In the following section, we determine explicitly the structure of the Hecke algebras
H(G(F), (GO(F)ay, p°)) and H(GO(F), (GO(F)sy,0,0°))-

3. STRUCTURE OF THE DEPTH-ZERO HECKE ALGEBRA

In this section, we will study the Hecke algebra H(G°(F), (K°, p°)) associated with
the depth-zero type (K, p°). We define the subgroup N(pys0) of the F-points of
the normalizer Ngo(M?) of MY in G by

N(pMo) = {n S Ngo(MO)(F) | "Kyro = Ko, ano = pMo}
and write W(ppso) := N(ppgo)/Kpro. We write
Igory(p°) = {g € G°(F) | Homgonaro (%", p°) # {0}}.

Then from [AEMO24al Proposition and Corollary [3.4.14], we have N(pps0) C
Ico(ry(p°) and the inclusion induces a bijection

W (paro) = KO\Igor (p°)/K°.

In order to describe the groups N(pp0) and W(pyso) below, we define the element
s of the group

G°(F) = (GLa(E>) x GL1(E4)) N SLs(F) D SLa(E>) x SLy(Ey)
by 5= ((_7¢),1). Then we have Ngo(M°)(F) = {1,5} x M°(F). We note that
the element s normalizes the groups K ao and Ko

Lemma 3.1. The element s normalizes the character pyo.
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Proof. We have
Paro = g(1 X (noNg,r) X 1)
= (noNEQ/F)&lgl
= (18 (™" o Niyyr) B (17" © Nisyy) ) @ (10 det),

where det denotes the restriction of the determinant map GLg(F) — F* to the
group Kjso. Since the group Ko is contained in the group SLg(F'), we have

(3.1) paro = (1 X (n " oNpg,r)®(n'o NE4/F)> | K0
We will prove that

(3.2) UM Ngy/rlog, =1

and

(3.3) no NE4/F|<9§4 =L

First, we will prove Equation (3.2)). The definition of Es implies that we have

N, /r(0g,) = (1+pr)(C?).

Hence, Equation (3.2) follows from the definition of 7. Similarly, we can prove
Equation (3.3)) by using the definition of  and the equation

Ng,/r(0F,) = (1+pr)(CY).
Combining equation (3.1)) with Equations (3.2)) and (3.3]), we obtain that
paro = (1 X(n " oNpgr)®(n'o NE4/F)> |50

= (1 X (no Ng,/r) W 1) | K0
= pmo |KMO = pPMmo- O
Proposition 3.2. We have
N(paro) = Noo(M°)(F) = {1,5} x M°(F).

Proof. The claim N(pp0) C Ngo(MO)(F) follows from the definition of N(ppo).
We will prove the reverse inclusion. According to Lemma 3.1} we have 5 € N(ps0).
Moreover, since M? is a torus, the conjugate action of M°(F) on Ky is trivial.
Thus, we conclude that the group M°(F) normalizes the character pyo. (]

To describe the structure of the group W (pps0), we define the elements 3" € N(ppo)
Z1
and 2 € MY(F) by §' = (( 0 ®n, ) ,1) and z = (CwE2,wE2,wEf). Let s, &,

—WEZ 0
and z be the images of 5, &', and Z in W (ppy0), respectively. When K9 = G°(F ), o,
we also set €y70 := (—1,1,1) € MO(F)z, ~ M°(F)4,.0 and let €j70 denote the image
of €yr0 in W(ppg0).

Corollary 3.3. We have W(pypo) = {1,8} x (M°(F)/K ).

Proof. This is immediate from Proposition O
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Proposition 3.4. We have

(s,8") x (2) ~ Wag(Ay) x Z (K° = GY(F),,),

Wioar) = {<S, s') X (2, €ar0) = Wag (A1) X Zx Z/2Z  (K® = GO(F)zy,0),

where Waﬂ‘(gl) denotes the affine Weyl group of the affine root system of type Kl,
i.e., the affine Weyl group with two simple reflections and no relation between them.

Proof. First, we consider the case where K = GO(F),,. We define the isomorphism
Hypo: MO(F)/Kppo — 72
by
(x,y, z)f(Mo = (ordg, ™ (x), ordg, ™ (y), ordy ™ (2)).

The definition of MY implies that an element (n1,n2,n3) € Z is contained in the
image of the subgroup

MO(F)/K p0 ~ M°(F) - Ko /K o
of MO(F)/I?MO if and only if
(3‘4) NE2/F(w1l}L‘12+n2) ’ NE4/F(W%Z) € NE2/F(OEZ) : NE4/F(OI>E<‘4>‘
The definition of Ey and E, implies that (3.4)) is equivalent to the condition that
T e (L4 pr) (e,
Thus, we conclude that
HMO (MO(F)/KMO) = {(711,712,713) S/ ‘ niy +ng +nzg = 0and 2 | n3}
((1,1,-2), (1, -1,0)).

Since Hppo(2) = (1,1, —2), Hpo(ss’) = (1,—1,0), and Hpo is an isomorphism, we
have that

MO(F)/K o = (s, 2).
From Corollary [3.3] we thus obtain that
Wipa) = {1, 5} x (MO(F)/Kpso) = (s, ', 2).

One can check that the subgroup (s, s’) of W(pps0) is isomorphic to the affine Weyl

group of type Aj, and that the element z has infinite order, commutes with the

elements s and s’, and no non-trivial power of z is contained in the span of s and

s’

Next, we consider the case where K° = GY(F),, 0. In this case, we have
MO(F)/Eno = M°(F)/M°(F)gq,0 = (M°(F)/M°(F)a,) % {earo).
Noting that €70 commutes with s and s, the claim follows from the first case. [

Lemma 3.5. Let ng,n, € N(pppo) denote lifts of s and z. Then, we have [ng,n,] €
Ko N ker ppro. In particular, we have ngn, # n ng.
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Proof. We write ny = sk and n, = Zk’ for some k, k' € Kjs0. Then, we have
[ns,n.] = [sk, zk']

= [3k, 2] -*[3k, K]

— [k, 3] - [3. 3] 7 3k, K.
Since 3,z € N(ppr0) normalize pyo, we have

5[k, 2),7[3k, k'] € ker pyyo.
On the other hand, we have
[5,2] = ("1, ¢, 1) € Kpgo \ ker ppyo

paro((CH, ¢, 1)) = (10 Nigyyr) (€) = 1(¢?) = —1.

Thus, we conclude that [ng,n,] € Ky \ ker pyyo. O

Corollary 3.6. The character pyro does not extend to the group N(pppo).

Proof. Suppose that pyso extends to a character p}f\/loof N(ppro). Then, since 3,2 €
N(pppo), we have [3,Z] € ker p}r\/[m which contradicts Lemma O

Our decomposition of W (py0) given in Proposition gives rise to a length func-
tion on this group, the standard length function on extended affine Weyl groups.
More precisely, we start with the length function £p,,im on (s, s’) with respect to the
generators {s, s’} of (s,s’). We extend lprim to W(pp0) by

Lorim (W2"™) = Lppim (W) when K° = GO(F),,,
Corim(w2"™€ 0) i= lppim(w)  when K° = G(F )y, 0
for w e (s,s'), n € Z, and t € {0,1}.

Remark 3.7. Suppose that K® = G°(F),,0. According to [Mor93, Proposi-
tion 5.2], we can take a lift n, € N(ppo) for each w € W{(ppo) such that if
Lorim(W1w2) = Lprim(W1) + Lprim (w2), then we have Ny w, = N, Nw,. However,
this statement is false in general, and Lemma [3.5| provides a counterexample. The
failure of [Mor93, Proposition 5.2] does not affect Morris’s main result [Mor93, The-
orem 7.12] as his proof can easily be adapted to circumvent the use of such good
coset representatives. Alternatively, the recent proof of the more general result
[AFMO24al, Section [5] also does not rely on a choice of representatives. On the
other hand, [Mor93, Remark 7.12(a)], which states that the the 2-cocycle u” is
trivial if the representation p° is a character, does depend on such representatives,
and the example covered in this paper shows that [Mor93, Remark 7.12(a)] is not
true in general (see Corollary below).

Although Proposition decomposes W (ppo) into a product of an affine Weyl
group (s,s’) and a complement ((z) and (z,€ypp0) for K = G°(F),, and K° =
GY(F)z,.0, respectively) the decomposition of W(pps0) provided in [AFMO24a]
(and also in [Mor93|, 7.3]) is different, and comes from a different length function,
where more elements have length zero, which is denoted by fx_.o1 and defined in
[AFMO24al, Definition [3.6.3]. The subgroup Q(pas0) of W(pas0) is defined by

Qpago) == {w € Wipno) | bicral(w) = o}.
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Proposition 3.8. We have W(pp0) = Q(paro).
That is, all elements of W (pjs0) have length zero with respect to ficyel.

Proof. For each w € W(py0), we fix a non-zero element ¢,, € H(G°(F), (K°, p°))
with support in K%wK©°. To prove the proposition, it suffices to show that for any
wy,wy € W(ppo), we have @u, * @y € C - 0oy, According to Proposition
we have W(pp0) = (s,8") X (2) or W(pp0) = (s,8) X (z,€ep0), and we can check
easily that if wq,ws € W{(ppso) satisty Lprim(wiwz) = Lprim(w1) + Lprim (w2), then
we have B B _ _ B
Kow Kowy K = Kwywy K°.

Since we have K° = I?Mo - K° and the group N(ps0) normalizes the group f(Mo,
we also obtain that

KoleOU)QKO g I?Owll?owgf(o n SLS<F>

= IN(Owlwszo N SLg(F)

= I?OwlwgffMo KN SLg(F)

= I?O . I?MowlngO N SLg(F)

= I?O’U.)l’LUQKO N SLg(F)

- (f(o N SLB(F)) wiws K°

= Ko’wl’ngO.
In particular, in this case, we obtain that @, * @, € C- @yu,w,. Thus, to prove
the proposition, it now suffices to show that ¢, x o3 € C - p; and g * @y €
C - ;. Similar calculations as above imply that K%sK%sK" = K° U K%sK° and
K%' K%' K% = KOU K9’ K°. Hence, we obtain that

@S*¢56C~@S@C'Q@1 and @Sl*ws/ec-gps,@c.wl'

Thus, it suffices to prove that (s *¢s)(5) = (ps *@s)(5) = 0. We take a
set of representatives for K°/ (K°N°KY) as {u(z) | # € Op,/pE,}, where u(z) =

((é f) , 1). Then, we can calculate the convolution product (ps * ©s) (3) as

(ps * 0s) (5) = Z ps(h) - SQS(h71§)

heKOSKO /KO
SED DR RENE
ke KO /(KONFKO)
= Y es(u@)d) 05 u(—2)3).
2€0E, /PE,

For z € O,, we have

5 lu(—2)5 = ((i ?) ,1) .

Hence, 5~ 'u(—0)5 ¢ KSK" and for z € O, , we have

5 lu(—2)F = ((‘f)l ‘i)g((l) “311),1)
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Hence, the definition of p° implies that

(s * ps) (5) = Z @s(u(2)3) - s (5 u(—2)3)

méOEz/pEz
= :(3)? > (noNpg,/r) (—2)
20 /(1+pE,)
=3 Y, n®) =0,
2€0} /(1+pr)

where the last equality follows from the fact that the restriction of the character 7>
to O is non-trivial. Similarly, we can prove that (ps * ¢g) (5') = 0. O

We fix a family T = {Tn € Hompg o, ("paso, pMo)}
3.10.3] and define the 2-cocycle

7 W(paro) x W(paro) = C
as in [AFMO24al Notation [3.6.1].

neN(py0) M [AFMO24al, Choice

Corollary 3.9. We have an isomorphism
H(GO(F)’ (K07p0)) = (C[W(pMo)a:uTL

and the 2-cocycle 17 is non-trivial.

Proof. The corollary follows from [AFMO24al Theorem [4.4.8], Corollary and
Proposition [3.8] U
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